The Barrel Organ
T
Data tables for Lorentz and CPT violation
V. Alan Kostelecky´, REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY–MARCH 2011
Physics Department, Indiana University, Bloomington, Indiana 47405, USA
Neil Russell
Physics Department, Northern Michigan University, Marquette, Michigan 49855, USA
(Received 6 March 2010; published 10 March 2011)
This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in
the standard-model extension. Summary tables are extracted listing maximal attained sensitivities
in the matter, photon, and gravity sectors. Tables presenting definitions and properties are also
compiled.
DOI: 10.1103/RevModPhys.83.11 PACS numbers: 11.30.Cp, 11.30.Er
CONTENTS
I. Introduction 11
II. Summary Tables 12
III. Data Tables 15
IV. Properties Tables 20
A. Minimal QED extension 22
B. Minimal SME 28
C. Nonminimal photon sector 29
I. INTRODUCTION
Recent years have seen a renewed interest in experimental
tests of Lorentz and CPT symmetry. Observable signals of
Lorentz and CPT violation can be described in a modelindependent
way using effective field theory (Kostelecky´ and
Potting, 1995).
The general realistic effective field theory for Lorentz
violation is called the standard-model extension (SME)
(Colladay and Kostelecky´, 1997; 1998; Kostelecky´, 2004).
It includes the standard model coupled to general relativity
along with all possible operators for Lorentz violation. Both
global and local Lorentz violation are incorporated. Since
CPT violation in realistic field theories is accompanied by
Lorentz violation (Greenberg, 2002), the SME also describes
general CPT violation. Reviews of the SME can be found
in Kostelecky´ (1999), (2002), (2005), Bluhm (2006),
Kostelecky´ (2008), (2011).
Each Lorentz-violating term in the Lagrange density of the
SME is constructed as the coordinate-independent product of
a coefficient for Lorentz violation with a Lorentz-violating
operator. The Lorentz-violating physics associated with any
operator is therefore controlled by the corresponding coefficient,
and so any experimental signal for Lorentz violation
can be expressed in terms of one or more of these coefficients.
The Lorentz-violating operators in the SME are systematically
classified according to their mass dimension, and
operators of arbitrarily large dimension can appear. At any
fixed dimension, the operators are finite in number and can in
principle be enumerated. A limiting case of particular interest
is the minimal SME, which can be viewed as the restriction
of the SME to include only Lorentz-violating operators of
mass dimension 4 or less. The corresponding coefficients for
Lorentz violation are dimensionless or have positive mass
dimension.
The results summarized here concern primarily but not
exclusively the coefficients for Lorentz violation in the minimal
SME.We compile data tables for these SME coefficients,
including both existing experimental measurements and some
theory-derived limits. Each of these data tables provides
information about the results of searches for Lorentz violation
for a specific sector of the SME. For each measurement or
constraint, we list the relevant coefficient or combination
of coefficients, the result as presented in the literature, the
context in which the search was performed, and the source
citation. The tables include results available from the literature
up to 31 July 2010, with updates provided by Kostelecky´
and Russell (2011).
The scope of the searches for Lorentz violation listed in the
data tables can be characterized roughly in terms of depth,
breadth, and refinement. Deep searches yield great sensitivity
to a small number of SME coefficients. Broad searches cover
substantial portions of the coefficient space, usually at a lesser
sensitivity. Searches with high refinement disentangle combinations
of coefficients. In the absence of a compelling signal
for Lorentz violation, all types of searches are necessary to
obtain complete coverage of the possibilities.
As a guide to the scope of the existing searches, we extract
from the data tables three summary tables covering the
sectors for matter (electrons, protons, neutrons, and their
antiparticles), photons, and gravity. These summary tables
list our best estimates for the maximal attained sensitivities to
the relevant SME coefficients in the corresponding sectors.
Each entry in the summary tables is obtained under the
assumption that only one coefficient is nonzero. The summary
tables therefore provide information about the overall
search depth and breadth, at the cost of masking the search
refinement.
In addition to the data tables and the summary tables, we
also provide properties tables listing some features and definitions
of the SME and the coefficients for Lorentz violation.
The Lagrange densities for the minimal QED extension in
Riemann spacetime, the minimal SME in Riemann-Cartan
spacetime, and the nonminimal photon sector in Minkowski
REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY–MARCH 2011
0034-6861= 2011=83(1)=11(21) 11 _ 2011 American Physical Society
spacetime are provided in tabulated form. The mass dimensions
of the operators for Lorentz violation and their properties
under the various discrete spacetime transformations are
displayed. Standard combinations of SME coefficients that
appear in the literature are listed. Along with the data tables
and the summary tables, the properties tables can be used to
identify open directions for future searches. Among these are
first measurements of unconstrained coefficients, improved
sensitivities to constrained coefficients, and studies disentangling
combinations of coefficients.
The order of the tables is as follows. Table I contains a list
of all tables. The three summary tables are presented next,
Tables II, III, and IV. These are followed by the data tables,
Tables V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, and XV.
The properties tables appear last, Tables XVI, XVII, XVIII,
XIX, XX, XXI, XXII, XXIII, and XXIV.
A description of the summary tables is given in Sec. II.
Information about the format and content of the data tables is
presented in Sec. III, while Sec. IV provides an overview of
the properties tables. The bibliography for the text and all the
tables follows Sec. IV.
II. SUMMARY TABLES
Three summary tables are provided (Tables II, III, and IV),
listing maximal experimental sensitivities attained for coefficients
in the matter, photon, and gravity sectors of the
minimal SME. To date, there is no compelling experimental
evidence supporting Lorentz violation. A few measurements
suggest nonzero coefficients at weak confidence levels. These
latter results are excluded from the summary tables but are
listed in the data tables.
In these three summary tables, each displayed sensitivity
value represents our conservative estimate of a 2_ limit,
given to the nearest order of magnitude, on the modulus of
the corresponding coefficient. Our rounding convention is
logarithmic: A factor greater than or equal to 100:5 rounds
to 10, while a factor less than 100:5 rounds to 1. In a few cases,
tighter results may exist when suitable theoretical assumptions
are adopted; these results can be found in the data tables
that follow.
Where observations involve a linear combination of the
coefficients appearing in the summary tables, the displayed
sensitivity for each coefficient assumes for definiteness that
no other coefficient contributes. Some caution is therefore
advisable in applying the results in these summary tables to
situations involving two or more nonzero coefficient values.
Care in applications is also required because under some
circumstances certain coefficients can be intrinsically unobservable
or can be absorbed into others by field or coordinate
redefinitions as described in Sec. IV.A.
In presenting the physical sensitivities, we adopt natural
units with ℏ ¼ c ¼ _0
¼ 1 and express mass units in GeV.
Our values are reported in the standard Sun-centered inertial
reference frame (Bluhm et al., 2002) widely used in the
literature. This frame is illustrated in Fig. 1. The origin of the
time coordinate T is at the 2000 vernal equinox. The Z axis is
directed north and parallel to the rotational axis of the Earth at
T ¼ 0. The X axis points from the Sun toward the vernal
equinox, while the Y axis completes a right-handed system.
Some further details about this frame, including transformations
to other frames, can be found in Sec. III A and
Appendix C of Kostelecky´ and Mewes (2002).
Table II lists the maximal attained sensitivities involving
electrons, protons, neutrons, and their antiparticles. For each
distinct massive spin-half Dirac fermion in the minimal SME
in Minkowski spacetime, there are 44 independent observable
combinations of coefficients for Lorentz violation in the
nonrelativistic limit. Of these, 20 also control CPT violation.
The 44 combinations are conventionally chosen as the tilde
TABLE I. List of tables.
Type Table Content
Summary II Maximal sensitivities for the matter sector
III Maximal sensitivities for the photon sector
IV Maximal sensitivities for the gravity sector
Data V Electron sector
VI Proton sector
VII Neutron sector
VIII Photon sector
IX Charged-lepton sector
X Neutrino sector
XI Meson sector
XII Electroweak sector
XIII Gluon sector
XIV Gravity sector
XV Nonminimal photon sector
Properties XVI Lagrange density for the minimal QED extension in Riemann spacetime
XVII C, P, T, properties for operators for Lorentz violation in QED
XVIII Definitions for the fermion sector of the minimal QED extension
XIX Definitions for the photon sector of the minimal QED extension
XX Lagrange density for the fermion sector of the minimal SME in Riemann-Cartan spacetime
XXI Lagrange density for the boson sector of the minimal SME in Riemann-Cartan spacetime
XXII Coefficients in the neutrino sector
XXIII Quadratic Lagrange density for the nonminimal photon sector in Minkowski spacetime
XXIV Spherical coefficients for the nonminimal photon sector in Minkowski spacetime
12 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
coefficients shown. The definitions of these 44 tilde coefficients
in terms of coefficients in the minimal SME are listed
in Table XVIII. All the definitions appear elsewhere in the
literature (Bluhm et al., 2003) except the four combinations
~b_
J and ~cTT. The three tilde coefficients ~b_
J are the antimatter
equivalent of the tilde coefficients ~bJ. They appear in nonrelativistic
studies of antimatter properties, such as the hyperfine
transitions of antihydrogen (Bluhm et al., 1999). The
tilde coefficient ~cTT is a simple scaling of the coefficient cTT
in the minimal SME, introduced here to ensure completeness
of the set of tilde coefficients. All tilde coefficients have
dimensions of GeV in natural units. In Table II, a superscript
indicating the particle species of relevance is understood on
all coefficients. For example, the first line of the table presents
limits on three different tilde coefficients, ~be
X, ~bp
X, ~bn
X. In the
table, a dash indicates that no sensitivity to the coefficient has
been identified to date. A few maximal sensitivities listed in
the electron column are obtained by applying the inverse of
the definitions in Table XVIII to the electron-sector data in
Table V.
Table III displays the maximal attained sensitivities to
coefficients for Lorentz violation in the photon sector of the
minimal SME. There are 23 observable coefficient combinations
for photons, of which four also control CPT violation.
The 19 tilde coefficients listed in the table are conventional
TABLE III. Maximal sensitivities for the photon sector.
Coefficient Sensitivity
ð~_eþÞXY 10_32
ð~_eþÞXZ 10_32
ð~_eþÞYZ 10_32
ð~_eþÞXX _ ð~_eþÞYY 10_32
ð~_eþÞZZ 10_32
ð~_o_ÞXY 10_32
ð~_o_ÞXZ 10_32
ð~_o_ÞYZ 10_32
ð~_o_ÞXX _ ð~_o_ÞYY 10_32
ð~_o_ÞZZ 10_32
ð~_e_ÞXY 10_17
ð~_e_ÞXZ 10_17
ð~_e_ÞYZ 10_17
ð~_e_ÞXX _ ð~_e_ÞYY 10_17
ð~_e_ÞZZ 10_16
ð~_oþÞXY 10_13
ð~_oþÞXZ 10_14
ð~_oþÞYZ 10_14
~_tr 10_14
k
ð3Þ
ðVÞ00 10_43 GeV
k
ð3Þ
ðVÞ10 10_42 GeV
Rek
ð3Þ
ðVÞ11 10_42 GeV
Imk
ð3Þ
ðVÞ11 10_42 GeV
TABLE II. Maximal sensitivities for the matter sector.
Coefficient Electron Proton Neutron
~bX 10_31 GeV 10_31 GeV 10_32 GeV
~bY 10_31 GeV 10_31 GeV 10_32 GeV
~bZ 10_29 GeV – –
~bT 10_26 GeV – 10_26 GeV
~b_
J; ðJ ¼ X; Y; ZÞ 10_22 GeV – –
~c_ 10_18 GeV 10_24 GeV 10_27 GeV
~cQ 10_17 GeV 10_21 GeV 10_10 GeV
~cX 10_19 GeV 10_25 GeV 10_25 GeV
~cY 10_19 GeV 10_25 GeV 10_25 GeV
~cZ 10_19 GeV 10_24 GeV 10_27 GeV
~cTX 10_18 GeV 10_20 GeV –
~cTY 10_18 GeV 10_20 GeV –
~cTZ 10_20 GeV 10_20 GeV –
~cTT 10_18 GeV 10_11 GeV 10_11 GeV
~dþ 10_27 GeV – 10_27 GeV
~d_ 10_26 GeV – 10_26 GeV
~dQ 10_26 GeV – 10_26 GeV
~dXY 10_26 GeV – 10_27 GeV
~dYZ 10_26 GeV – 10_26 GeV
~dZX 10_26 GeV – –
~dX 10_22 GeV 10_25 GeV 10_28 GeV
~dY 10_22 GeV 10_25 GeV 10_28 GeV
~dZ 10_19 GeV – –
~H
XT 10_26 GeV – 10_26 GeV
~H
YT 10_26 GeV – 10_26 GeV
~H
ZT 10_26 GeV – 10_27 GeV
~gT 10_27 GeV – 10_27 GeV
~gc 10_26 GeV – 10_27 GeV
~gQ – – –
~g_ – – –
~gTJ; ðJ ¼ X; Y; ZÞ – – –
~gXY 10_17 GeV – –
~gYX 10_17 GeV – –
~gZX 10_18 GeV – –
~gXZ 10_17 GeV – –
~gYZ 10_17 GeV – –
~gZY 10_18 GeV – –
~gDX 10_22 GeV 10_25 GeV 10_28 GeV
~gDY 10_22 GeV 10_25 GeV 10_28 GeV
~gDZ 10_22 GeV – –
TABLE IV. Maximal sensitivities for the gravity sector.
Coefficient Electron Proton Neutron
__ aT 10_11 GeV 10_11 GeV 10_11 GeV
__ aX 10_6 GeV 10_6 GeV 10_5 GeV
__ aY 10_5 GeV 10_5 GeV 10_4 GeV
__ aZ 10_5 GeV 10_5 GeV 10_4 GeV
__ eT 10_8 10_11 10_11
__ eX 10_3 10_6 10_5
__ eY 10_2 10_5 10_4
__ eZ 10_2 10_5 10_4
Coefficient Sensitivity
_sXX _ _sYY 10_9
_sXX þ _sYY _ 2_sZZ 10_7
_sXY 10_9
_sXZ 10_9
_sYZ 10_9
_sTX 10_6
_sTY 10_7
_sTZ 10_5
_sTT –
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 13
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
TABLE V. Electron sector.
Combination Result System Ref.
~bX
ð_0:9 _ 1:4Þ _ 10_31 GeV Torsion pendulum Heckel et al. (2008)
~bY
ð_0:9 _ 1:4Þ _ 10_31 GeV Torsion pendulum Heckel et al. (2008)
~bZ ð_0:3 _ 4:4Þ _ 10_30 GeV Torsion pendulum Heckel et al. (2008)
1
2
ð~bT
þ ~d_ _ 2~gc
_ 3~gT
þ 4 ~dþ _ ~dQ
Þ ð0:9 _ 2:2Þ _ 10_27 GeV Torsion pendulum Heckel et al. (2008)
1
2
ð2~gc
_ ~gT
_ ~bT
þ 4~dþ _ ~d_ _ ~dQ
Þ
þ tan_ð~dYZ _ ~H XTÞ
ð_0:8 _ 2:0Þ _ 10_27 GeV Torsion pendulum Heckel et al. (2008)
~bX
ð2:8 _ 6:1Þ _ 10_29 GeV K/He magnetometer Kornack et al. (2008)
~bY
ð6:8 _ 6:1Þ _ 10_29 GeV K/He magnetometer Kornack et al. (2008)
~bX ð0:1 _ 2:4Þ _ 10_31 GeV Torsion pendulum Heckel et al. (2006)
~bY ð_1:7 _ 2:5Þ _ 10_31 GeV Torsion pendulum Heckel et al. (2006)
~bZ
ð_29 _ 39Þ _ 10_31 GeV Torsion pendulum Heckel et al. (2006)
~b? <3:1 _ 10_29 GeV Torsion pendulum Hou, et al. (2003)
j ~bZj <7:1 _ 10_28 GeV Torsion pendulum Hou, et al. (2003)
re <3:2 _ 10_24 Hg/Cs comparison Hunter et al. (1999)
j~bj <50 rad=s Penning trap Dehmelt et al. (1999)
r!_
a ;diurnal <1:6 _ 10_21 Penning trap Mittleman et al. (1999)
j ~bJj; ðJ ¼ X; YÞ <10_27 GeV Hg/Cs comparison Kostelecky´ and
Lane (1999)*
cTT ð_4 to 2Þ _ 10_15 Collider physics Altschul (2010)b*
cðTXÞ ð_30 to 1Þ _ 10_14 Collider physics Altschul (2010)b*
cðTYÞ ð_80 to 6Þ _ 10_15 Collider physics Altschul (2010)b*
cðTZÞ ð_11 to 1:3Þ _ 10_13 Collider physics Altschul (2010)b*
0:83cðTXÞ þ 0:51cðTYÞ þ 0:22cðTZÞ ð4 _ 8Þ _ 10_11 1S-2S transition Altschul (2010)a*
cXX
_ cYY
ð_2:9 _ 6:3Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller et al. (2007)*
1
2 cðXYÞ ð2:1 _ 0:9Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller et al. (2007)*
1
2 cðXZÞ ð_1:5 _ 0:9Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller et al. (2007)*
1
2 cðYZÞ ð_0:5 _ 1:2Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller et al. (2007)*
cXX
þ cYY
_ 2cZZ
ð_106 _ 147Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller et al. (2007)*
_ZZ ð13:3 _ 9:8Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller et al. (2007)*
1
2 cðYZÞ ð2:1 _ 4:6Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller (2005)*
1
2 cðXZÞ ð_1:6 _ 6:3Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller (2005)*
1
2 cðXYÞ ð7:6 _ 3:5Þ _ 10_16 Optical, microwave
resonators
Mu¨ ller (2005)*
cXX
_ cYY
ð1:15 _ 0:64Þ _ 10_15 Optical, microwave
resonators
Mu¨ ller (2005)*
jcXX
þ cYY
_ 2cZZ
_ 0:25ð~_e_ÞZZj <10_12 Optical, microwave
resonators
Mu¨ ller (2005)*
j 1
2 cðXYÞj <8 _ 10_15 Optical resonators Mu¨ller et al. (2003)b*
jcXX
_ cYY
j <1:6 _ 10_14 Optical resonators Mu¨ller et al. (2003)b*
jcXX þ cYY _ 2cZZj <10_5 Doppler shift Lane (2005)*
jcTJ þ cJTj; ðJ ¼ X; Y; ZÞ <10_2 Doppler shift Lane (2005)*
cXX
ð_3 to 5Þ _ 10_15 Astrophysics Altschul (2006)b*
cYY
ð_0:7 to 2:5Þ _ 10_15 Astrophysics Altschul (2006)b*
cZZ ð_1:6 to 2:5Þ _ 10_15 Astrophysics Altschul (2006)b*
cðYZÞ ð_2:5 to 1:8Þ _ 10_15 Astrophysics Altschul (2006)b*
c0X
ð_7 to 4Þ _ 10_15 Astrophysics Altschul (2006)b*
c0Y
ð_0:5 to 1:5Þ _ 10_15 Astrophysics Altschul (2006)b*
c0Z ð_4 to 2Þ _ 10_17 Astrophysics Altschul (2006)b*
j0:05cXX
þ 0:55cYY
þ 0:41cZZ
þ 0:16cðXYÞ _ 0:14cðXZÞ _ 0:47cðYZÞ
þ 0:22cð0XÞ þ 0:74cð0YÞ _ 0:64cð0ZÞ þ c00
j
<1:3 _ 10_15 Astrophysics Altschul (2007)c*
j0:58cXX þ 0:04cYY þ 0:38cZZ
_ 0:14cðXYÞ _ 0:47cðXZÞ þ 0:12cðYZÞ
þ 0:76cð0XÞ _ 0:19cð0YÞ _ 0:62cð0ZÞ þ c00
j
<2:5 _ 10_15 Astrophysics Altschul (2007)c*
14 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
combinations of the 19 dimensionless coefficients in the
minimal SME. The remaining entries in the table concern
combinations of the four coefficients controlling CPT violation,
which have dimensions of GeV in natural units. The
definitions of all 23 combinations are taken from the literature
(Kostelecky´ and Mewes, 2002, 2007) and are provided in
Table XIX.
Table IV displays the maximal attained sensitivities to
certain coefficients for Lorentz violation involving the gravity
sector of the minimal SME. Two classes of coefficients can be
distinguished in this context: ones appearing in the matter
sector, and ones appearing in the pure-gravity sector. For the
first class, Table IV contains results for the 24 coefficients _ ae
_,
_ ap
_, _ an
_ and _ ee
_, _ ep
_, _ en
_ involving the electron, proton, and
neutron sectors. These observables are associated with
CPT-odd operators and have dimensions of GeV in natural
units. The prefactor _ is a model-dependent number
(Kostelecky´ and Tasson, 2009). For the second class, the table
displays nine combinations of the nine dimensionless coefficients
for Lorentz violation s__. Additional sets of coefficients
involving the gravity sector exist, but no sensitivities to
them have been identified to date.
III. DATA TABLES
We present 11 data tables compiled from the existing
literature. Of these, 10 tables include results for various
sectors of the minimal SME: the electron sector (Table V),
the proton sector (Table VI), the neutron sector (Table VII),
the photon sector (Table VIII), the charged-lepton sector
(Table IX), the neutrino sector (Table X), the meson sector
(Table XI), the electroweak sector (Table XII), the gluon
sector (Table XIII), and the gravity sector (Table XIV). The
remaining table (Table XV) lists existing bounds on nonminimal
coefficients for Lorentz violation in the photon
sector.
Combination Result System Ref.
cTT
__ ð_13 to 2Þ _ 10_16 Astrophysics Stecker and Glashow (2001)*
~dXY
_ ~HZT
þ tan_~H YT
ð0:1 _ 1:8Þ _ 10_27 GeV Torsion pendulum Heckel et al. (2008)
~H
ZT ð_4:1 _ 2:4Þ _ 10_27 GeV Torsion pendulum Heckel et al. (2008)
~H
YT _ ~dZX ð_4:9 _ 8:9Þ _ 10_27 GeV Torsion pendulum Heckel et al. (2008)
_~H XT
þ tan_ð~gT
_ 2~dþ þ ~dQ
Þ ð1:1 _ 9:2Þ _ 10_27 GeV Torsion pendulum Heckel et al. (2008)
jdXX
j <2 _ 10_14 Astrophysics Altschul (2007)b*
jdYYj; jdZZj <3 _ 10_15 Astrophysics Altschul (2007)b*
jdðXYÞj <2 _ 10_15 Astrophysics Altschul (2007)b*
jdðXZÞj <2 _ 10_14 Astrophysics Altschul (2007)b*
jdðYZÞj <7 _ 10_15 Astrophysics Altschul (2007)b*
jdTXj <5 _ 10_14 Astrophysics Altschul (2007)b*
jdTY
j <5 _ 10_15 Astrophysics Altschul (2007)b*
jdTZ
j <8 _ 10_17 Astrophysics Altschul (2007)b*
j ~dJj; j~gD;Jj; ðJ ¼ X; YÞ <10_22 GeV Hg/Cs comparison Kostelecky´ and Lane (1999)*
TABLE V. (Continued)
TABLE VI. Proton sector.
Combination Result System Ref.
~b? <6 _ 10_32 GeV K/He magnetometer Brown et al. (2010)
~bX
ð6:0 _ 1:3Þ _ 10_31 GeV K/He magnetometer Kornack et al. (2008)
~bY ð1:5 _ 1:2Þ _ 10_31 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffififfiffiffiffiffiffiffiffiffi GeV K/He magnetometer Kornack et al. (2008)
ð~be
X
þ ~bp
X
Þ2 þ ð~be
Y
þ ~bp
Y
Þ2
q
ð3 _ 2Þ _ 10_27 GeV H maser Humphrey et al. (2003)
j ~bJ
j ðJ ¼ X; YÞ <2 _ 10_27 GeV H maser Phillips et al. (2001)
j ~bJ
j ðJ ¼ X; YÞ <10_27 GeV Hg/Cs comparison Kostelecky´ and Lane (1999)*
~cQ
ð_0:3 _ 2:2Þ _ 10_22 GeV Cs fountain Wolf et al. (2006)
~c_ ð_1:8 _ 2:8Þ _ 10_25 GeV Cs fountain Wolf et al. (2006)
~cX
ð0:6 _ 1:2Þ _ 10_25 GeV Cs fountain Wolf et al. (2006)
~cY ð_1:9 _ 1:2Þ _ 10_25 GeV Cs fountain Wolf et al. (2006)
~cZ
ð_1:4 _ 2:8Þ _ 10_25 GeV Cs fountain Wolf et al. (2006)
~cTX
ð_2:7 _ 3:0Þ _ 10_21 GeV Cs fountain Wolf et al. (2006)
~cTY ð_0:2 _ 3:0Þ _ 10_21 GeV Cs fountain Wolf et al. (2006)
~cTZ ð_0:4 _ 2:0Þ _ 10_21 GeV Cs fountain Wolf et al. (2006)
jcXX
þ cYY
_ 2cZZ
j <10_11 Doppler shift Lane (2005)*
jcTJ
þ cJT
j; ðJ ¼ X; Y; ZÞ <10_8 Doppler shift Lane (2005)*
rH_
!c <4 _ 10_26 Penning trap Gabrielse et al. (1999)
j ~dJ
j; j~gD;J
j; ðJ ¼ X; YÞ <10_25 GeV Hg/Cs comparison Kostelecky´ and Lane (1999)*
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 15
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
Each of these 11 data tables contains four columns. The
first column lists the coefficients for Lorentz violation or their
relevant combinations. Results for coefficients of the same
generic type are grouped together. Certain results involve
combinations of coefficients across more than one sector;
each of these has been listed only once in the table deemed
most appropriate. Some minor changes in notation or format
have been introduced as needed, but for the most part the
results are quoted as they appear in the cited references.
Definitions for standard combinations of coefficients are
provided in the properties tables that follow. A few authors
use unconventional notation; where immediate, the match to
the standard notation is shown. Parentheses enclosing a pair
of indices on a coefficient indicate symmetrization without a
factor of 2.
The second column contains the measurements and
bounds, presented in the same form as documented in the
literature. For each generic type of coefficient, the results are
listed in reverse chronological order. If no significant figures
appear in the quoted limit on an absolute value, the order of
magnitude of the limit is given as a power of 10. Where both
statistical and systematic errors appear in a given result, they
are quoted in that order.
The third column contains a succinct reminder of the
physical context in which the bound is extracted, while the
fourth column contains the source citations. The reader is
referred to the latter for details of experimental and theoretical
procedures, assumptions underlying the results, definitions
of unconventional notations, and other relevant
information. Results deduced on theoretical grounds are distinguished
from those obtained via direct experimental measurement
by an asterisk placed after the citation.
Tables V, VI, and VII contain data for the electron, proton,
and neutron sectors, respectively. Each table is divided into
sections focusing sequentially on combinations involving
the coefficients b_, c__, H__, d__, and g___. A superscript
indicating the particle species of relevance is understood on
all coefficients in these three tables. Standard definitions for
the coefficients and their combinations are provided in
Tables XVI and XVIII. Some results depend on _ ’ 23:5_,
which is the angle between the equatorial and ecliptic planes
in the solar system. Note that existing bounds on observables
involving ae
_, ap
_ , an
_ and ee
_, ep
_ , en
_ are obtained from gravitational
experiments and are listed with the gravity-sector
results in Table XIV.
Table VIII presents the photon-sector data. Most of the
combinations of coefficients for Lorentz violation appearing
in the first column are defined in Tables XVI and XIX. The
combinations k
ð3Þ
ðVÞjm, k
ð4Þ
ðEÞjm, and k
ð4Þ
ðBÞjm arise from analyses
(Kostelecky´ and Mewes, 2007, 2008, 2009) using spinweighted
spherical harmonics. The factor of _ appearing
in some places is the speed of the Earth in the standard Suncentered
reference frame, which is about 10_4 in natural
units.
Tables IX, X, and XI list measurements and bounds on
coefficients for Lorentz violation involving second- and thirdgeneration
fermions in the minimal SME. Results for muons
and tau leptons are in Table XI, while those for neutrinos are
TABLE VII. Neutron sector.
Combination Result System Ref.
~b? <3:72 _ 10_32 GeV He/Xe magnetometer Tullney et al. (2010)
~bX
ð0:1 _ 1:6Þ _ 10_33 GeV K/He magnetometer Brown et al. (2010)
~bY ð2:5 _ 1:6Þ _ 10_33 GeV K/He magnetometer Brown et al. (2010)
j ~b?j <3:7 _ 10_33 GeV K/He magnetometer Brown et al. (2010)
b? <2 _ 10_29 GeV Ultracold neutrons Altarev et al. (2009)
_4:2b
ðnÞ
i
þ 0:7b
ðpÞ
i 2_ð53 _ 45Þ nHz Xe/He maser Flambaum et al. (2009)*
jbJ
_ 1
2 _JKLHKL
j; ðJ ¼ X; YÞ <10_28 GeV Maser/magnetometer Altschul (2009)a*
~bX ð_3:7 _ 8:1Þ _ 10_32 GeV K/He magnetometer Kornack et al. (2008)
~bY
ð_9:0 _ 7:5Þ _ 10_32 GeV K/He magnetometer Kornack et al. (2008)
~bY
_ 0:0034~dY
þ 0:0034~gDY
ð8:0 _ 9:5Þ _ 10_32 GeV Xe/He maser Cane` et al. (2004)
_~bX _ 0:0034~dX _ 0:0034~gDX ð2:2 _ 7:9Þ _ 10_32 GeV Xe/He maser Cane` et al. (2004)
_cos_ð1
2
~bT
þ 1
2
~d_ _ ~gc
_ 1
2 ~gT
Þ
_ cos_ð~gT _ 2 ~dþ þ 1
2
~dQÞ þ sin_ð~dYZ _ ~HXTÞ
ð_1:1 _ 1:0Þ _ 10_27 GeV Xe/He maser Cane` et al. (2004)
_~H ZT ð0:2 _ 1:8Þ _ 10_27 GeV Xe/He maser Cane` et al. (2004)
ð1
2
~bT þ 1
2
~d_ _ ~gc _ 1
2 ~gTÞ _ ð~gT _ 2 ~dþ þ 1
2
~dQÞ ð_1:8 _ 1:9Þ _ 10_27 GeV Xe/He maser Cane` et al. (2004)
cos_ð~HZT
_ ~dXY
Þ _ sin_~HYT
ð_1:1 _ 0:8Þ _ 10_27 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi GeV Xe/He maser Cane` et al. (2004)
ð~bXÞ2 þ ð~bYÞ2
q
ð6:4 _ 5:4Þ _ 10_32 GeV Xe/He maser Bear et al. (2000)
rn <1:5 _ 10_30 Hg/Cs comparison Hunter et al. (1999)
j ~bJ
j; ðJ ¼ X; YÞ <10_30 GeV Hg/Cs comparison Kostelecky´ and Lane (1999)*
1
4
jcQ
j; jcðTJÞj; ðJ ¼ X; Y;ZÞ <5 _ 10_14 Astrophysics Altschul (2008)b*
minðjc11
_ c22
j; jc11
_ c33
j; jc22
_ c33
jÞ <1:7 _ 10_8 Pulsar timing Altschul (2007)a*
j~cJ
j; ðJ ¼ X; YÞ <10_25 GeV Be/H comparison Kostelecky´ and Lane (1999)*
j~c_j; j~cZj <10_27 GeV Hg/Hg & Ne/He
comparison
Kostelecky´ and Lane (1999)*
jmdJT _ 1
2 _JKLmgKLTj; ðJ ¼ X; YÞ <10_28 GeV Maser/magnetometer Altschul (2009)a*
1
2
jdðXZÞj; jdðTZÞj <5 _ 10_14 Astrophysics Altschul (2008)b*
j ~dJ
j; j~gD;J
j; ðJ ¼ X; YÞ <10_28 GeV Hg/Cs comparison Kostelecky´ and Lane (1999)*
16 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
TABLE VIII. Photon sector.
Combination Result System Ref.
ð~_e_ÞXY ð0:8 _ 0:6Þ _ 10_16 Rotating microwave resonators Hohensee et al. (2010)
ð~_e_ÞXY ð_0:31 _ 0:73Þ _ 10_17 Rotating optical resonators Herrmann et al. (2009)
ð~_e_ÞXY ð0:0 _ 1:0 _ 0:3Þ _ 10_17 Rotating optical resonators Eisele, et al. (2009)
ð~_e_ÞXY ð_0:1 _ 0:6Þ _ 10_17 Rotating optical resonators Herrmann et al. (2008)
ð~_e_ÞXY ð_7:7 _ 4:0Þ _ 10_16 Optical, microwave resonators Mu¨ ller et al. (2007)*
ð~_e_ÞXY ð2:9 _ 2:3Þ _ 10_16 Rotating microwave resonators Stanwix et al. (2006)
ð~_e_ÞXY ð_3:1 _ 2:5Þ _ 10_16 Rotating optical resonators Herrmann et al. (2005)
ð~_e_ÞXY ð_0:63 _ 0:43Þ _ 10_15 Rotating microwave resonators Stanwix et al. (2005)
ð~_e_ÞXY ð_1:7 _ 1:6Þ _ 10_15 Optical, microwave resonators Mu¨ ller (2005)*
ð~_e_ÞXY ð_5:7 _ 2:3Þ _ 10_15 Microwave resonator, maser Wolf et al. (2004)
ð~_e_ÞXY ð1:7 _ 2:6Þ _ 10_15 Optical resonators Mu¨ ller et al. (2003)a
ð~_e_ÞXY ð1:4 _ 1:4Þ _ 10_13 Microwave resonators Lipa et al. (2003)
ð~_e_ÞXZ ð1:5 _ 1:3Þ _ 10_16 Rotating microwave resonators Hohensee et al. (2010)
ð~_e_ÞXZ ð0:54 _ 0:70Þ _ 10_17 Rotating optical resonators Herrmann et al. (2009)
ð~_e_ÞXZ ð0:4 _ 1:5 _ 0:1Þ _ 10_17 Rotating optical resonators Eisele et al. (2009)
ð~_e_ÞXZ ð_2:0 _ 0:9Þ _ 10_17 Rotating optical resonators Herrmann et al. (2008)
ð~_e_ÞXZ ð_10:3 _ 3:9Þ _ 10_16 Optical, microwave resonators Mu¨ ller et al. (2007)*
ð~_e_ÞXZ ð_6:9 _ 2:2Þ _ 10_16 Rotating microwave resonators Stanwix et al. (2006)
ð~_e_ÞXZ ð5:7 _ 4:9Þ _ 10_16 Rotating optical resonators Herrmann et al. (2005)
ð~_e_ÞXZ ð0:19 _ 0:37Þ _ 10_15 Rotating microwave resonators Stanwix et al. (2005)
ð~_e_ÞXZ ð_4:0 _ 3:3Þ _ 10_15 Optical, microwave resonators Mu¨ ller (2005)*
ð~_e_ÞXZ ð_3:2 _ 1:3Þ _ 10_15 Microwave resonator, maser Wolf et al. (2004)
ð~_e_ÞXZ ð_6:3 _ 12:4Þ _ 10_15 Optical resonators Mu¨ ller et al. (2003)a
ð~_e_ÞXZ ð_3:5 _ 4:3Þ _ 10_13 Microwave resonators Lipa et al. (2003)
ð~_e_ÞYZ ð1:7 _ 1:3Þ _ 10_16 Rotating microwave resonators Hohensee et al. (2010)
ð~_e_ÞYZ ð_0:97 _ 0:74Þ _ 10_17 Rotating optical resonators Herrmann et al. (2009)
ð~_e_ÞYZ ð_0:6 _ 1:4 _ 0:5Þ _ 10_17 Rotating optical resonators Eisele et al. (2009)
ð~_e_ÞYZ ð_0:3 _ 1:4Þ _ 10_17 Rotating optical resonators Herrmann et al. (2008)
ð~_e_ÞYZ ð0:9 _ 4:2Þ _ 10_16 Optical, microwave resonators Mu¨ ller et al. (2007)*
ð~_e_ÞYZ ð2:1 _ 2:1Þ _ 10_16 Rotating microwave resonators Stanwix et al. (2006)
ð~_e_ÞYZ ð_1:5 _ 4:4Þ _ 10_16 Rotating optical resonators Herrmann et al. (2005)
ð~_e_ÞYZ ð_0:45 _ 0:37Þ _ 10_15 Rotating microwave resonators Stanwix et al. (2005)
ð~_e_ÞYZ ð0:52 _ 2:52Þ _ 10_15 Optical, microwave resonators Mu¨ ller (2005)*
ð~_e_ÞYZ ð_0:5 _ 1:3Þ _ 10_15 Microwave resonator, maser Wolf et al. (2004)
ð~_e_ÞYZ ð3:6 _ 9:0Þ _ 10_15 Optical resonators Mu¨ ller et al. (2003)a
ð~_e_ÞYZ ð1:7 _ 3:6Þ _ 10_13 Microwave resonators Lipa et al. (2003)
ð~_e_ÞXX _ ð~_e_ÞYY ð0:2 _ 1:0Þ _ 10_16 Rotating microwave resonators Hohensee et al. (2010)
ð~_e_ÞXX _ ð~_e_ÞYY ð0:80 _ 1:27Þ _ 10_17 Rotating optical resonators Herrmann et al. (2009)
ð~_e_ÞXX _ ð~_e_ÞYY ð0:8 _ 2:0 _ 0:3Þ _ 10_17 Rotating optical resonators Eisele, et al. (2009)
ð~_e_ÞXX _ ð~_e_ÞYY ð_2:0 _ 1:7Þ _ 10_17 Rotating optical resonators Herrmann et al. (2008)
ð~_e_ÞXX _ ð~_e_ÞYY ð_12 _ 16Þ _ 10_16 Optical, microwave resonators Mu¨ ller et al. (2007)*
ð~_e_ÞXX _ ð~_e_ÞYY ð_5:0 _ 4:7Þ _ 10_16 Rotating microwave resonators Stanwix et al. (2006)
ð~_e_ÞXX _ ð~_e_ÞYY ð5:4 _ 4:8Þ _ 10_16 Rotating optical resonators Herrmann et al. (2005)
ð~_e_ÞXX _ ð~_e_ÞYY ð_1:3 _ 0:9Þ _ 10_15 Rotating microwave resonators Stanwix et al. (2005)
ð~_e_ÞXX _ ð~_e_ÞYY ð2:8 _ 3:3Þ _ 10_15 Optical, microwave resonators Mu¨ ller (2005)*
ð~_e_ÞXX _ ð~_e_ÞYY ð_3:2 _ 4:6Þ _ 10_15 Microwave resonator, maser Wolf et al. (2004)
ð~_e_ÞXX _ ð~_e_ÞYY ð8:9 _ 4:9Þ _ 10_15 Optical resonators Mu¨ ller et al. (2003)a
ð~_e_ÞXX _ ð~_e_ÞYY ð_1:0 _ 2:1Þ _ 10_13 Microwave resonators Lipa et al. (2003)
ð~_e_ÞZZ ð143 _ 179Þ _ 10_16 Rotating microwave resonators Hohensee et al. (2010)
ð~_e_ÞZZ ð_0:04 _ 1:73Þ _ 10_17 Rotating optical resonators Herrmann et al. (2009)
ð~_e_ÞZZ ð1:6 _ 2:4 _ 1:1Þ _ 10_17 Rotating optical resonators Eisele et al. (2009)
ð~_e_ÞZZ ð_0:2 _ 3:1Þ _ 10_17 Rotating optical resonators Herrmann et al. (2008)
ð~_e_ÞZZ ð223 _ 290Þ _ 10_16 Optical, microwave resonators Mu¨ ller et al. (2007)*
ð~_e_ÞZZ ð143 _ 179Þ _ 10_16 Rotating microwave resonators Stanwix et al. (2006)
ð~_e_ÞZZ ð_1:9 _ 5:2Þ _ 10_15 Rotating optical resonators Herrmann et al. (2005)
ð~_e_ÞZZ ð21 _ 57Þ _ 10_15 Rotating microwave resonators Stanwix et al. (2005)
ð~_e_ÞZZ ð_2:9 _ 2:2Þ _ 10_14 Optical resonators Antonini et al. (2005)
jð~_e_ÞðklÞj <4 _ 10_18 Astrophysics Klinkhamer and Risse
(2008)*
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 17
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
Combination Result System Ref.
ð~_oþÞXY ð_1:5 _ 1:2Þ _ 10_12 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffififfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Rotating microwave resonators Hohensee et al. (2010)
½2cTX _ ð~_oþÞYZ_2 þ ½2cTY _ ð~_oþÞZX_2
p
<1:6 _ 10_14 Compton scattering Bocquet et al. (2010)
_ð~_oþÞXY ð_0:14 _ 0:78Þ _ 10_17 Rotating optical resonators Herrmann et al. (2009)
ð~_oþÞXY ð1:5 _ 1:5 _ 0:2Þ _ 10_13 Rotating optical resonators Eisele et al. (2009)
_ð~_oþÞXY ð_2:5 _ 2:5Þ _ 10_17 Rotating optical resonators Herrmann et al. (2008)
ð~_oþÞXY ð1:7 _ 2:0Þ _ 10_12 Optical, microwave resonators Mu¨ ller et al. (2007)*
ð~_oþÞXY ð_0:9 _ 2:6Þ _ 10_12 Rotating microwave resonators Stanwix et al. (2006)
ð~_oþÞXY ð_2:5 _ 5:1Þ _ 10_12 Rotating optical resonators Herrmann et al. (2005)
ð~_oþÞXY ð0:20 _ 0:21Þ _ 10_11 Rotating microwave resonators Stanwix et al. (2005)
ð~_oþÞXY ð_1:8 _ 1:5Þ _ 10_11 Microwave resonator, maser Wolf et al. (2004)
ð~_oþÞXY ð14 _ 14Þ _ 10_11 Optical resonators Mu¨ ller et al. (2003)a
ð~_oþÞXZ ð1:7 _ 0:7Þ _ 10_12 Rotating microwave resonators Hohensee et al. (2010)
_ð~_oþÞXZ ð_0:45 _ 0:62Þ _ 10_17 Rotating optical resonators Herrmann et al. (2009)
ð~_oþÞXZ ð_0:1 _ 1:0 _ 0:2Þ _ 10_13 Rotating optical resonators Eisele et al. (2009)
_ð~_oþÞXZ ð1:5 _ 1:7Þ _ 10_17 Rotating optical resonators Herrmann et al. (2008)
ð~_oþÞXZ ð_3:1 _ 2:3Þ _ 10_12 Optical, microwave resonators Mu¨ ller et al. (2007)*
ð~_oþÞXZ ð_4:4 _ 2:5Þ _ 10_12 Rotating microwave resonators Stanwix et al. (2006)
ð~_oþÞXZ ð_3:6 _ 2:7Þ _ 10_12 Rotating optical resonators Herrmann et al. (2005)
ð~_oþÞXZ ð_0:91 _ 0:46Þ _ 10_11 Rotating microwave resonators Stanwix et al. (2005)
ð~_oþÞXZ ð_1:4 _ 2:3Þ _ 10_11 Microwave resonator, maser Wolf et al. (2004)
ð~_oþÞXZ ð_1:2 _ 2:6Þ _ 10_11 Optical resonators Mu¨ ller et al. (2003)a
ð~_oþÞYZ ð0:2 _ 0:7Þ _ 10_12 Rotating microwave resonators Hohensee et al. (2010)
_ð~_oþÞYZ ð_0:34 _ 0:61Þ _ 10_17 Rotating optical resonators Herrmann et al. (2009)
ð~_oþÞYZ ð_0:1 _ 1:0 _ 0:4Þ _ 10_13 Rotating optical resonators Eisele et al. (2009)
_ð~_oþÞYZ ð_1:0 _ 1:5Þ _ 10_17 Rotating optical resonators Herrmann et al. (2008)
ð~_oþÞYZ ð_2:8 _ 2:2Þ _ 10_12 Optical, microwave resonators Mu¨ ller et al. (2007)*
ð~_oþÞYZ ð_3:2 _ 2:3Þ _ 10_12 Rotating microwave resonators Stanwix et al. (2006)
ð~_oþÞYZ ð2:9 _ 2:8Þ _ 10_12 Rotating optical resonators Herrmann et al. (2005)
ð~_oþÞYZ ð0:44 _ 0:46Þ _ 10_11 Rotating microwave resonators Stanwix et al. (2005)
ð~_oþÞYZ ð2:7 _ 2:2Þ _ 10_11 Microwave resonator, maser Wolf et al. (2004)
ð~_oþÞYZ ð0:1 _ 2:7Þ _ 10_11 Optical resonators Mu¨ ller et al. (2003)a
ð~_oþÞYX _ 0:432ð~_oþÞZX ð4:0 _ 8:4Þ _ 10_9 Microwave resonators Lipa et al. (2003)
ð~_oþÞXY _ 0:209ð~_oþÞYZ ð4:0 _ 4:9Þ _ 10_9 Microwave resonators Lipa et al. (2003)
ð~_oþÞXZ _ 0:484ð~_oþÞYZ ð1:6 _ 1:7Þ _ 10_9 Microwave resonators Lipa et al. (2003)
ð~_oþÞYZ þ 0:484ð~_oþÞXZ ð0:6 _ 1:9Þ _ 10_9 Microwave resonators Lipa et al. (2003)
jð~_oþÞðijÞj <2 _ 10_18 Astrophysics Klinkhamer and Risse
(2008)*
~_tr ð_1:5 _ 0:74Þ _ 10_8 Rotating microwave resonators Hohensee et al. (2010)
~_tr
ð_0:3 _ 3Þ _ 10_7 Microwave interferometer Tobar et al. (2009)
j~_tr
_ 4
3 ce
00
j <5 _ 10_15 Collider physics Altschul (2009)b*
~_tr
_ 4
3 ce
00
ð_5:8 to 12Þ _ 10_12 Collider physics Hohensee et al. (2009)a,
(2009)b*
~_tr _ 4
3 cp
00 <6 _ 10_20 Astrophysics Klinkhamer and Schreck
(2008)*
_½~_tr
_ 4
3 ce
00
_ <9 _ 10_16 Astrophysics Klinkhamer and Schreck
(2008)*
~_tr <1:4 _ 10_19 Astrophysics Klinkhamer and Risse
(2008)*
j~_tr
j <8:4 _ 10_8 Optical atomic clocks Reinhardt et al. (2007)
j~_trj <2:2 _ 10_7 Heavy-ion storage ring Hohensee et al. (2007)*
j~_tr
j <2 _ 10_14 Astrophysics Carone et al. (2006)*
j~_tr
j <3 _ 10_8 ge
_ 2 Carone et al. (2006)*
j~_trj <1:6 _ 10_5 Sagnac interferometer Cotter and Varcoe (2006)
j
P
jm2Yjm
ð98:2_; 182:1_Þðk
ð4Þ
ðEÞjm
þ ik
ð4Þ
ðBÞjm
Þj &10_37 Astrophysical birefringence Kostelecky´ and Mewes
(2009)*
j
P
jm2Yjm
ð87:3_; 37:3_Þðk
ð4Þ
ðEÞjm
þ ik
ð4Þ
ðBÞjm
Þj &10_37 Astrophysical birefringence Kostelecky´ and Mewes
(2009)*
TABLE VIII. (Continued)
18 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
Combination Result System Ref.
k
ð4Þ
ðEÞ20
_ð17þ7
_9
Þ _ 10_31 CMB polarization Kostelecky´ and Mewes
(2007)*
k
ð4Þ
ðBÞ20
_ð17þ7
_9
Þ _ 10_31 CMB polarization Kostelecky´ and Mewes
ffiPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffififfiffiffiffiffiffiffiffi (2007)*
m
ðjk
ð4Þ
ðEÞ2m
j2 þ jk
ð4Þ
ðBÞ2m
j2Þ
q
<5 _ 10_32 Astrophysical birefringence Kostelecky´ and Mewes
(2002)*, (2009)*
jkaj for somea <2 _ 10_37 Astrophysical birefringence Kostelecky´ and Mewes
(2006)*
jkaj for a ¼ 1; . . . ; 10 <2 _ 10_32 Astrophysical birefringence Kostelecky´ and Mewes
(2002)*
jk
ð3Þ
ðVÞ10
j <16 _ 10_21 GeV Schumann resonances Mewes (2008)*
jk
ð3Þ
ðVÞ11
j <12 _ 10_21 GeV Schumann resonances Mewes (2008)*
jk
ð3Þ
AF
j _ ð6jk
ð3Þ
ðVÞ11
j2 þ 3jk
ð3Þ
ðVÞ10
j2Þ1=2=
ffiffiffiffiffiffiffi
4_
p ð10þ4
_8
Þ _ 10_43 GeV CMB polarization Kostelecky´ and Mewes
(2008)*
jk
ð3Þ
AF
j ð15 _ 6Þ _ 10_43 GeV CMB polarization Kostelecky´ and Mewes
(2007)*, (2009)*
k
ð3Þ
ðVÞ10
_ð3 _ 1Þ _ 10_42 GeV CMB polarization Kostelecky´ and Mewes
(2007)*
Rek
ð3Þ
ðVÞ11
_ð21þ7
_9
Þ _ 10_43 GeV CMB polarization Kostelecky´ and Mewes
(2007)*
jk
ð3Þ
AF
j ð0:57 _ 0:70ÞH0 Astrophysical birefringence Carroll and Field (1997)*
j2k
ð3Þ
AF
j 10_41GeV Astrophysical birefringence Nodland and Ralston
(1997)*
j
P
jm0Yjmk
ð3Þ
ðVÞjm
j <6 _ 10_43 GeV Astrophysical birefringence Carroll et al. (1990)*,
Kostelecky´ and Mewes
(2009)*
jk
ð3Þ
ðVÞ00
j <14 _ 10_21 GeV Schumann resonances Mewes (2008)*
k
ð3Þ
ðVÞ00
ð1:1 _ 1:3 _ 1:5Þ _ 10_43 GeV CMB polarization Komatsu et al. (2010)
k
ð3Þ
ðVÞ00
ð0:04 _ 0:35Þ _ 10_43 GeV CMB polarization Xia et al. (2010)*
k
ð3Þ
ðVÞ00
ð_0:64 _ 0:50 _ 0:50Þ _ 10_43 GeV CMB polarization Brown et al. (2009)
k
ð3Þ
ðVÞ00
ð4:3 _ 4:1Þ _ 10_43 GeV CMB polarization Pagano et al. (2009)
k
ð3Þ
ðVÞ00
ð_1:4 _ 0:9 _ 0:5Þ _ 10_43 GeV CMB polarization Wu et al. (2009)
k
ð3Þ
ðVÞ00
ð2:3 _ 5:4Þ _ 10_43 GeV CMB polarization Kostelecky´ and Mewes
(2008)*
k
ð3Þ
ðVÞ00 <2:5 _ 10_43 GeV CMB polarization Kahniashvili et al.
(2008)*,
Kostelecky´ and Mewes
(2008)*
k
ð3Þ
ðVÞ00
ð1:2 _ 2:2Þ _ 10_43 GeV CMB polarization Komatsu et al. (2009),
Kostelecky´ and Mewes
(2008)*
k
ð3Þ
ðVÞ00
ð12 _ 7Þ _ 10_43 GeV CMB polarization Kostelecky´ and Mewes
(2007)*
k
ð3Þ
ðVÞ00
ð2:6 _ 1:9Þ _ 10_43 GeV CMB polarization Xia et al. (2008)*,
Kostelecky´ and Mewes
(2008)*
k
ð3Þ
ðVÞ00
ð2:5 _ 3:0Þ _ 10_43 GeV CMB polarization Cabella et al. (2007)*,
Kostelecky´ and Mewes
(2008)*
k
ð3Þ
ðVÞ00
ð6:0 _ 4:0Þ _ 10_43 GeV CMB polarization Feng et al. (2006)*,
Kostelecky´ and Mewes
(2007)*
k
ð3Þ
ðVÞ00
ð1:1 _ 1:4ÞH0 Astrophysical birefringence Carroll and Field
(1997)*
k
ð3Þ
ðVÞ00 <2 _ 10_42 GeV Astrophysical birefringence Carroll et al. (1990)*,
Kostelecky´ and Mewes
(2009)*
TABLE VIII. (Continued)
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 19
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
in Table X. For both these tables, many of the coefficients
appearing in the first column are specified in the lepton sector
of Table XX. The neutrino results in Table X are obtained in
the context of various simplified models, as discussed in the
references. Experimental sensitivities to coefficients for operators
involving second- and third-generation quark fields
are presently limited to mesons and are presented in Table XI.
The coefficients appearing in this table are composite quantities
defined in the corresponding references. They are effective
coefficients for which complete analytical expressions
are as yet unknown, formed from certain quark-sector coefficients
appearing in Table XX and from other quantities
arising from the quark binding in the mesons.
Tables XII and XIII concern coefficients in the gauge
sectors of the minimal SME. Results for the electroweak
sector are listed in Table XII, while those for the gluon sector
are in Table XIII. The coefficients for the electroweak sector
are defined in the gauge and Higgs sections of Table XXI. The
gluon-sector coefficient is the analog of the corresponding
photon-sector coefficient defined in Table XIX. To date, all
results for the gauge sector are deduced from theoretical
considerations.
Table XIV presents measurements and bounds concerning
the gravity sector of the minimal SME. The specific combinations
of coefficients in the pure-gravity sector that appear
in the first column are defined in the references. They are
expressed in terms of the coefficients for Lorentz violation
listed in the gravity section of Table XXI.
The final data table, Table XV, contains a compilation of
some measurements and bounds on coefficients for Lorentz
violation in the nonminimal SME. Attention is restricted
to the photon sector, in which results are available for a
variety of nonrenormalizable operators of dimensions 5, 6,
7, 8, and 9. A convenient basis for classifying operators of
dimension d is given by the spin-weighted spherical harmonics
(Kostelecky´ and Mewes, 2009). The corresponding coefficients
are listed in Table XXIV. Some constraints have been
obtained for the vacuum coefficients for Lorentz violation,
which are c
ðdÞ
ðIÞjm, k
ðdÞ
ðEÞjm, k
ðdÞ
ðBÞjm for even d and k
ðdÞ
ðVÞjm for odd d,
where the subscripts jm label the angular-momentum quantum
numbers. In the first column of Table XV, the usual
spherical harmonics 0Yjm are evaluated at specified angles,
which are the celestial coordinates of certain astrophysical
sources. None of the vacuum-orthogonal coefficients for
Lorentz violation have been measured to date.
IV. PROPERTIES TABLES
Nine properties tables are provided, listing various features
and definitions related to Lorentz violation. Four tables
concern the terms in the restriction of the minimal SME
to quantum electrodynamics (QED) in Riemann spacetime.
For this theory, which is called the minimal QED extension,
the tables include information about the operator structure
(Table XVI), the action of discrete symmetries (Table XVII),
and some useful coefficient combinations (Tables XVIII and
XIX). Two tables contain information about the matter sector
(Table XX) and the gauge and gravity sectors (Table XXI)
of the minimal SME in Riemann-Cartan spacetime. Another
table (Table XXII) summarizes some features of the coefficients
for Lorentz violation in the neutrino sector. The two
remaining tables (Tables XXIII and XXIV) provide information
about the operator structure and the spherical coefficients
for Lorentz violation in the nonminimal photon sector.
For these properties tables, our primary conventions are
those of Kostelecky´ (2004). Greek indices _; _; _; . . . refer to
curved-spacetime coordinates and Latin indices a; b; c; . . . to
local Lorentz coordinates. The vierbein formalism (Utiyama,
1956; Kibble, 1961)), which relates the two sets of coordinates,
is adopted to facilitate the description of spinors on the
spacetime manifold. The determinant e of the vierbein e_
a is
related to the determinant g of the metric g__ by e ¼
ffiffiffiffiffiffiffiffi
_g
p
.
The conventions for the Dirac matrices _a are given in
Appendix A of Kostelecky´ (2004). The Newton gravitational
constant GN enters as the combination _ _ 8_GN, and it has
dimensions of inverse mass squared.
In the Minkowski-spacetime limit, the metric g__ is
written ___ with diagonal entries ð_1; 1; 1; 1Þ. For decompositions
into time and space components, we adopt the
Sun-centered frame of Fig. 1 and use indices J; K; L; . . . to
denote the three spatial components X; Y; Z. The sign of the
antisymmetric tensor _____ is fixed via the component
_TXYZ
¼þ1, and the antisymmetric symbol in three spatial
dimensions is defined with _XYZ
¼þ1. Note that some of
the literature on the SME in Minkowski spacetime adopts a
metric ___ of opposite sign, following the common present
TABLE IX. Charged-lepton sector.
Combination Result System Ref.
b_
Z
_ð1:0 _ 1:1Þ _ 10_23 GeV BNL g_
_ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 Bennett et al. (2008)
ð_b_þ
X
Þ2 þ ð_b_þ
Y
Þ2
q
<1:4 _ 10_24 GeV BNL g_
_ 2 Bennett et al. (2008) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_b__
X
Þ2 þ ð_b__
Y
Þ2
q
<2:6 _ 10_24 GeV BNL g_ _ 2 Bennett et al. (2008) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~b_
X
Þ2 þ ð~b_
Y
Þ2
q
<2 _ 10_23 GeV Muonium spectroscopy Hughes et al. (2001)
b_
Z
_ 1:19ðm_d_
Z0
þ H_
XY
Þ ð_1:4 _ 1:0Þ _ 10_22 GeV BNL, CERN g_
_ 2 data Deile et al. (2002)
b_
Z
ð_2:3 _ 1:4Þ _ 10_22 GeV CERN g_
_ 2 data Bluhm et al. (2000)*, Deile et al. (2002)
m_d_
Z0
þ H_
XY
ð1:8 _ 6:0Þ _ 10_23 GeV BNL g_ _ 2 Bennett et al. (2008)
jc_j <10_11 Astrophysics Altschul (2007)c*
jcj <10_8 Astrophysics Altschul (2007)c*
20 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
TABLE X. Neutrino sector.
Combination Result System Ref.
ðaL
ÞT
e_
ð_3:1 _ 0:9Þ _ 10_20 GeV MiniBooNE Katori (2010)
ðaL
ÞX
e_
ð0:6 _ 1:9Þ _ 10_20 GeV MiniBooNE Katori (2010)
ðaL
ÞY
e_
ð_0:9 _ 1:8Þ _ 10_20 GeV MiniBooNE Katori (2010)
ðaLÞZ
e_ ð_4:2 _ 1:2Þ _ 10_20 GeV MiniBooNE Katori (2010)
ðcL
ÞTT
e_
ð7:2 _ 2:1Þ _ 10_20 MiniBooNE Katori (2010)
ðcL
ÞTX
e_
ð_0:9 _ 2:8Þ _ 10_20 MiniBooNE Katori (2010)
ðcL
ÞTY
e_
ð1:3 _ 2:6Þ _ 10_20 MiniBooNE Katori (2010)
ðcL
ÞTZ
e_
ð5:9 _ 1:7Þ _ 10_20 MiniBooNE Katori (2010)
ðcLÞXZ
e_ ð_1:1 _ 3:7Þ _ 10_20 MiniBooNE Katori (2010)
ðcLÞYZ
e_ ð1:7 _ 3:4Þ _ 10_20 MiniBooNE Katori (2010)
ðcLÞZZ
e_ ð2:6 _ 0:8Þ _ 10_19 MiniBooNE Katori (2010)
jðaL
ÞX
_
j <5:9 _ 10_23 GeV MINOS FD Adamson et al. (2010)
jðaL
ÞY
_
j <6:1 _ 10_23 GeV MINOS FD Adamson et al. (2010)
jaXL
j; jaY
L
j <3:0 _ 10_20 GeV MINOS ND Adamson et al. (2008)
jðcL
ÞTX
_
j; jðcL
ÞTY
_
j <0:5 _ 10_23 MINOS FD Adamson et al. (2010)
jðcL
ÞXX
_
j <2:5 _ 10_23 MINOS FD Adamson et al. (2010)
jðcL
ÞYY
_
j <2:4 _ 10_23 MINOS FD Adamson et al. (2010)
jðcL
ÞXY
_
j <1:2 _ 10_23 MINOS FD Adamson et al. (2010)
jðcLÞYZ
_j; jðcLÞXZ
_j <0:7 _ 10_23 MINOS FD Adamson et al. (2010)
jcTX
L
j; jcTY
L
j <9 _ 10_23 MINOS ND Adamson et al. (2008)
jcXX
L
j <5:6 _ 10_21 MINOS ND Adamson et al. (2008)
jcYY
L
j <5:5 _ 10_21 MINOS ND Adamson et al. (2008)
jcXY
L
j <2:7 _ 10_21 MINOS ND Adamson et al. (2008)
jcYZ
L
j <1:2 _ 10_21 MINOS ND Adamson et al. (2008)
jcXZ
L
j <1:3 _ 10_21 MINOS ND Adamson et al. (2008)
ðaL
ÞT_e__
ð0:2 _ 1:0Þ _ 10_19 GeV LSND Katori (2010)
ðaL
ÞX_e__
ð4:2 _ 1:5Þ _ 10_19 GeV LSND Katori (2010)
ðaL
ÞY_e__
ð_1:7 _ 1:8Þ _ 10_19 GeV LSND Katori (2010)
ðaL
ÞZ_e__
ð1:0 _ 5:4Þ _ 10_19 GeV LSND Katori (2010)
ðcLÞTT
e_ __
ð0:3 _ 1:8Þ _ 10_18 LSND Katori (2010)
ðcL
ÞTX
e_ __
ð_5:2 _ 1:9Þ _ 10_18 LSND Katori (2010)
ðcL
ÞTY
e_ __
ð2:1 _ 2:2Þ _ 10_18 LSND Katori (2010)
ðcL
ÞTZ
e_ __
ð1:3 _ 6:7Þ _ 10_18 LSND Katori (2010)
ðcL
ÞXZ
e_ __
ð_2:7 _ 1:0Þ _ 10_17 LSND Katori (2010)
ðcL
ÞYZ
e_ __
ð1:1 _ 1:2Þ _ 10_17 LSND Katori (2010)
ðcLÞZZ
e_ __
ð_1:1 _ 5:9Þ _ 10_18 LSND Katori (2010)
jðCÞ e_ __
j2 ð10:7 _ 2:6 _ 1:3Þ _ ð10_19 GeVÞ2 LSND Auerbach et al. (2005)
jðCÞ e_ __
j2 þ 1
2
jðAs
Þ e_ __
j2 þ 1
2
jðAc
Þ e___
j2 ð9:9 _ 2:3 _ 1:4Þ _ ð10_19 GeVÞ2 LSND Auerbach et al. (2005)
jðCÞ e_ __
j2 þ 1
2
jðAs
Þ e_ __
j2 þ 1
2
jðAc
Þ e___
j2
þ 1
2
jðBs
Þ e_ __
j2 þ 1
2
jðBc
Þ e_ __
j2
ð10:5 _ 2:4 _ 1:4Þ _ ð10_19 GeVÞ2 LSND Auerbach et al. (2005)
ðc_e
L
Þ
00 <2 _ 10_11 Cosmic rays Altschul (2009)c*
a cos_ Excluded Multiple Barger et al. (2007)*
a sin_n^ Excluded Multiple Barger et al. (2007)*
c Excluded Multiple Barger et al. (2007)*
b <1:6 _ 10_23 GeV Atmospheric Messier (2005)
c <1:4 _ 10_26 Atmospheric Messier (2005)
_ a=c
_
<5 GeV Atmospheric Messier (2005)
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 21
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
usage in quantum physics instead of the one in relativity.
Under this alternative convention, terms in the Lagrange
density with an odd number of index contractions have
opposite signs to those appearing in this work. The numerical
results for the SME coefficients in the tables are unaffected
by the convention.
A. Minimal QED extension
Table XVI concerns the minimal QED extension, for
which the basic nongravitational fields are a Dirac fermion
c and the photon A_. The electromagnetic field-strength
tensor is F__
¼ @_A_
_ @_A_. The pure-gravity sector involves
the Riemann tensor R____, the Ricci tensor R__,
the curvature scalar R, and the cosmological constant _.
The spacetime covariant derivative D_ corrects local
Lorentz indices using the spin connection, corrects spacetime
indices using the Cartan connection, and contains the
usual gauge field A_ for the photon. The notation D
$
_ is an
abbreviation for the difference of two terms, the first with
derivative acting to the right and the second acting to
the left. Note that Table XVI is restricted to the zero-torsion
limit of the minimal SME. The general case (Kostelecky´,
TABLE XI. Meson sector.
Combination Result System Ref.
_aKX
ð_6:3 _ 6:0Þ _ 10_18 GeV K oscillations Di Domenico (2010)
_aKY
ð2:8 _ 5:9Þ _ 10_18 GeV K oscillations Di Domenico (2010)
_aKZ
ð2:4 _ 9:7Þ _ 10_18 GeV K oscillations Di Domenico (2010)
_aK0
ð0:4 _ 1:8Þ _ 10_17 GeV K oscillations Di Domenico (2010), Di Domenico (2008)
_aKZ
ð_1 _ 4Þ _ 10_17 GeV K oscillations Di Domenico (2008)
j_aK1
j <9:2 _ 10_22 GeV K oscillations Nguyen (2002)
j_aK2
j <9:2 _ 10_22 GeV K oscillations Nguyen (2002)
jð_aKÞ
T
_ 0:60ð_aKÞ
Z
j <5 _ 10_21 GeV K oscillations Kostelecky´ (1998)*, Kostelecky´ and Van Kooten (2010)*
NDð_aD0
_ 0:6_aDZ
Þ ð_2:8 to 4:8Þ _ 10_16 GeV D oscillations Link et al. (2003)
ND_aDX
ð_7 to 3:8Þ _ 10_16 GeV D oscillations Link et al. (2003)
ND_aDY
ð_7 to 3:8Þ _ 10_16 GeV D oscillations Link et al. (2003)
NBð_aB0
_ 0:30_aBZ
Þ ð_3:0 _ 2:4Þ _ 10_15 GeV Bd oscillations Aubert et al. (2008)
NB_aX
ð_22 _ 7Þ _ 10_15 GeV Bd oscillations Aubert et al. (2008)
NB_aY
ð_27 to _ 4Þ _ 10_15GeV Bd oscillations Aubert et al. (2008)
NBð_aB0
_ 0:3_aBZ
Þ _ð5:2 _ 4:0Þ _ 10_15 GeV Bd oscillations Aubert et al. (2006)
NB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_aBX
Þ2 þ ð_aBY
Þ2
q
ð37 _ 16Þ _ 10_15 GeV Bd oscillations Kostelecky´ and Van Kooten (2010)*
ð_aBs Þ
T
ð3:7 _ 3:8Þ _ 10_12 GeV Bs oscillations Kostelecky´ and Van Kooten (2010)*
_ ð_1:5 to 200Þ _ 10_11 Astrophysics Altschul (2008)a*
jc_j <10_10 Astrophysics Altschul (2007)c*
jcKj <10_9 Astrophysics Altschul (2007)c*
jcDj <10_8 Astrophysics Altschul (2007)c*
jcBd j; jcBs j <10_7 Astrophysics Altschul (2007)c*
TABLE XII. Electroweak sector.
Combination Result System Ref.
jðkA
__
Þ
__
j <3 _ 10_16 Cosmological birefringence Anderson et al. (2004)*
jðk_BÞ__j <0:9 _ 10_16 Cosmological birefringence Anderson et al. (2004)*
jðk_W
Þ
__
j <1:7 _ 10_16 Cosmological birefringence Anderson et al. (2004)*
jðkS
__
ÞXXj; jðkS
__
ÞYYj; jðkS
__
ÞZZj <10_27 Clock comparisons Anderson et al. (2004)*
jðkS
__
Þ
XY
j <10_27 Clock comparisons Anderson et al. (2004)*
jðkS
__
ÞXZj; jðkS
__
ÞYZj <10_25 Clock comparisons Anderson et al. (2004)*
jðkS
__
Þ
TT
j <4 _ 10_13 H_ ion, p_ comparison Anderson et al. (2004)*
jðk_
Þ
X
j; jðk_
Þ
Y
j <10_31 Xe-He maser Anderson et al. (2004)*
jðk_
Þ
Z
j; jðk_
Þ
T
j <2:8 _ 10_27 Xe-He maser Anderson et al. (2004)*
jkWj <10_5 Astrophysics Altschul (2007)c*
TABLE XIII. Gluon sector.
Combination Result System Ref.
j~_QCD
tr
j <2 _ 10_13 Astrophysics Carone et al. (2006)*
22 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
TABLE XIV. Gravity sector.
Combination Result System Ref.
j_ðaeþp
eff
Þ
T
j <10_7 GeV Free-fall weak equivalence principle (WEP) Kostelecky´ and Tasson (2010)*
j_ðaeþp
eff
ÞTj <10_10 GeV Force-comparison WEP Kostelecky´ and Tasson (2010)*
j_ðan
eff
Þ
T
j <10_7 GeV Free-fall WEP Kostelecky´ and Tasson (2010)*
j_ðan
eff
ÞTj <10_10 GeV Force-comparison WEP Kostelecky´ and Tasson (2010)*
j_ðaeþp_n
eff
Þ
T
_ 1
3mpðceþp_nÞ
TT
j <10_8 GeV Combined WEP Kostelecky´ and Tasson (2010)*
j_ðaeþp_n
eff
ÞT _ 1
3mpðceþp_nÞTT
þ ð1
2 cos2_ _ 1
6
ÞmnðcnÞ
Q
j
<10_8 GeV Free-fall WEP Kostelecky´ and Tasson (2010)*
j_ðaeþp_n
eff
Þ
T
_ 1
3mpðceþp_nÞ
TT
_ 1
6mnðcnÞQj
<10_11 GeV Force-comparison WEP Kostelecky´ and Tasson (2010)*
jðae
eff
Þ
*
þ ðap
eff
Þ
*
þ 0:1ðan
eff
Þ
*
j <10_6 GeV Solar System Kostelecky´ and Tasson (2010)*
jðae
eff
Þ_ þ ðap
eff
Þ_ þ 0:1ðan
eff
Þ_j <10_6 GeV Solar System Kostelecky´ and Tasson (2010)*
j_ae
T
þ _ap
T
_ 0:8_an
T
j <1 _ 10_11 GeV Torsion pendulum Kostelecky´ and Tasson (2009)*
jðcnÞQj <10_8 Combined WEP Kostelecky´ and Tasson (2010)*
jðcnÞ
*
j <10_8 Solar System Kostelecky´ and Tasson (2010)*
jðcnÞ_j <10_7 Solar System Kostelecky´ and Tasson (2010)*
_XX _ _YY ð4:4 _ 11Þ _ 10_9 Atom interferometry Chung et al. (2009)
_XY ð0:2 _ 3:9Þ _ 10_9 Atom interferometry Chung et al. (2009)
_XZ ð_2:6 _ 4:4Þ _ 10_9 Atom interferometry Chung et al. (2009)
_YZ ð_0:3 _ 4:5Þ _ 10_9 Atom interferometry Chung et al. (2009)
_TX ð_3:1 _ 5:1Þ _ 10_5 Atom interferometry Chung et al. (2009)
_TY ð0:1 _ 5:4Þ _ 10_5 Atom interferometry Chung et al. (2009)
_TZ ð1:4 _ 6:6Þ _ 10_5 Atom interferometry Chung et al. (2009)
_XX _ _YY ð_5:6 _ 2:1Þ _ 10_9 Atom interferometry Mu¨ ller et al. (2008)
_XY ð_0:09 _ 79Þ _ 10_9 Atom interferometry Mu¨ ller et al. (2008)
_XZ ð_13 _ 37Þ _ 10_9 Atom interferometry Mu¨ ller et al. (2008)
_YZ ð_61 _ 38Þ _ 10_9 Atom interferometry Mu¨ ller et al. (2008)
_TX ð5:4 _ 4:5Þ _ 10_5 Atom interferometry Mu¨ ller et al. (2008)
_TY ð_2:0 _ 4:4Þ _ 10_5 Atom interferometry Mu¨ ller et al. (2008)
_TZ ð1:1 _ 26Þ _ 10_5 Atom interferometry Mu¨ ller et al. (2008)
sXX _ sYY ð_1:2 _ 1:6Þ _ 10_9 LLR & atom interferometry Battat et al. (2007)*,
Chung et al. (2009)*
sXX þ sYY _ 2sZZ ð1:8 _ 38Þ _ 10_9 LLR & atom interferometry Battat et al. (2007)*,
Chung et al. (2009)*
sXY ð_0:6 _ 1:5Þ _ 10_9 LLR & atom interferometry Battat et al. (2007)*,
Chung et al. (2009)*
sXZ ð_2:7 _ 1:4Þ _ 10_9 LLR & atom interferometry Battat et al. (2007)*,
Chung et al. (2009)*
sYZ ð0:6 _ 1:4Þ _ 10_9 LLR & atom interferometry Battat et al. (2007)*,
Chung et al. (2009)*
sTX ð0:5 _ 6:2Þ _ 10_7 LLR & atom interferometry Battat et al. (2007)*,
Chung et al. (2009)*
sTY ð0:1 _ 1:3Þ _ 10_6 LLR & atom interferometry Battat et al. (2007)*,
Chung et al. (2009)*
sTZ ð_0:4 _ 3:8Þ _ 10_6 LLR & atom interferometry Battat et al. (2007)*,
Chung et al. (2009)*
s11 _ s22 ð1:3 _ 0:9Þ _ 10_10 Lunar laser ranging (LLR) Battat et al. (2007)*
s12 ð6:9 _ 4:5Þ _ 10_11 LLR Battat et al. (2007)*
s01 ð_0:8 _ 1:1Þ _ 10_6 LLR Battat et al. (2007)*
s02 ð_5:2 _ 4:8Þ _ 10_7 LLR Battat et al. (2007)*
s__c ð0:2 _ 3:9Þ _ 10_7 LLR Battat et al. (2007)*
s__s
ð_1:3 _ 4:1Þ _ 10_7 LLR Battat et al. (2007)*
jsj
*
10_9 Perihelion precession Bailey and Kostelecky´ (2006)*
js_j 10_8 Perihelion precession Bailey and Kostelecky´ (2006)*
jsSSP
j 10_13 Solar-spin precession Bailey and Kostelecky´ (2006)*
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 23
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
TABLE XV. Nonminimal photon sector.
Combination Result System Ref.
j
P
jm 0Yjm
ð98:2_; 182:1_Þk
ð5Þ
ðVÞjm
j <7 _ 10_33 GeV_1 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
jk
ð5Þ
ðVÞ00
j <2 _ 10_32 GeV_1 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
j
P
jm 0Yjm
ð87:3_; 37:3_Þk
ð5Þ
ðVÞjm
j <4 _ 10_33 GeV_1 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
jk
ð5Þ
ðVÞ00
j <1 _ 10_32 GeV_1 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
k
ð5Þ
ðVÞ00
ð3:2 _ 2:1Þ _ 10_20 GeV_1 CMB polarization Gubitosi et al. (2009)*
k
ð5Þ
ðVÞ00
ð3 _ 2Þ _ 10_20 GeV_1 CMB polarization Kostelecky´ and Mewes (2007)*
k
ð5Þ
ðVÞ10
ð8þ2
_3
Þ _ 10_20 GeV_1 CMB polarization Kostelecky´ and Mewes (2007)*
_ð8þ3
_4
Þ _ 10_20 GeV_1 CMB polarization Kostelecky´ and Mewes (2007)*
k
ð5Þ
ðVÞ20
_ð10 _ 3Þ _ 10_20 GeV_1 CMB polarization Kostelecky´ and Mewes (2007)*
k
ð5Þ
ðVÞ30
ð8þ3
_4
Þ _ 10_20 GeV_1 CMB polarization Kostelecky´ and Mewes (2007)*
_ð8 _ 3Þ _ 10_20 GeV_1 CMB polarization Kostelecky´ and Mewes (2007)*
P
jm 0Yjm
ð116_; 334_Þc
ð6Þ
ðIÞjm <3:9 _ 10_22 GeV_2 Astrophysical dispersion Vasileiou (2010)
c
ð6Þ
ðIÞ00 <1:4 _ 10_21 GeV_2 Astrophysical dispersion Vasileiou (2010)
P
jm 0Yjm
ð147_; 120_Þc
ð6Þ
ðIÞjm <3:2 _ 10_20 GeV_2 Astrophysical dispersion Abdo et al. (2009),
Kostelecky´ and Mewes (2009)*
c
ð6Þ
ðIÞ00 <1:1 _ 10_19 GeV_2 Astrophysical dispersion Abdo et al. (2009),
Kostelecky´ and Mewes (2009)*
j
P
jm 0Yjm
ð120_; 330_Þc
ð6Þ
ðIÞjm
j <7:4 _ 10_22 GeV_2 Astrophysical dispersion Aharonian et al. (2008),
Kostelecky´ and Mewes (2009)*
jc
ð6Þ
ðIÞ00
j <2:6 _ 10_21 GeV_2 Astrophysical dispersion Aharonian et al. (2008),
Kostelecky´ and Mewes (2009)*
P
jm 0Yjm
ð50:2_; 253_Þc
ð6Þ
ðIÞjm 3þ1
_2
_ 10_22 GeV_2 Astrophysical dispersion Albert et al. (2008),
Kostelecky´ and Mewes (2009)*
c
ð6Þ
ðIÞ00 10þ4
_7
_ 10_22 GeV_2 Astrophysical dispersion Albert et al. (2008),
Kostelecky´ and Mewes (2009)*
j
P
jm 0Yjm
ð99:7_; 240_Þc
ð6Þ
ðIÞjm
j <1 _ 10_16 GeV_2 Astrophysical dispersion Boggs et al. (2004),
Kostelecky´ and Mewes (2009)*
jc
ð6Þ
ðIÞ00
j <4 _ 10_16 GeV_2 Astrophysical dispersion Boggs et al. (2004),
Kostelecky´ and Mewes (2009)*
j
P
jm 2Yjm
ð98:2_; 182:1_Þðk
ð6Þ
ðEÞjm
þ ik
ð6Þ
ðBÞjm
Þj &10_29 GeV_2 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
j
P
jm 2Yjm
ð87:3_; 37:3_Þðk
ð6Þ
ðEÞjm
þ ik
ð6Þ
ðBÞjm
Þj &10_29 GeV_2 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
k
ð6Þ
ðEÞ20
_ð11þ4
_5
Þ _ 10_10 GeV_2 CMB polarization Kostelecky´ and Mewes (2007)*
k
ð6Þ
ðEÞ30
_ð11þ5
_6
Þ _ 10_10 GeV_2 CMB polarization Kostelecky´ and Mewes (2007)*
k
ð6Þ
ðEÞ40
_ð11þ5
_6
Þ _ 10_10 GeV_2 CMB polarization Kostelecky´ and Mewes (2007)*
j
P
jm 0Yjm
ð98:2_; 182:1_Þk
ð7Þ
ðVÞjm
j <2 _ 10_24 GeV_3 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
jk
ð7Þ
ðVÞ00
j <7 _ 10_24 GeV_3 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
j
P
jm 0Yjm
ð87:3_; 37:3_Þk
ð7Þ
ðVÞjm
j <5 _ 10_25 GeV_3 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
jk
ð7Þ
ðVÞ00
j <2 _ 10_24 GeV_3 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
P
jm 0Yjm
ð116_; 334_Þc
ð8Þ
ðIÞjm <2:1 _ 10_25 GeV_4 Astrophysical dispersion Vasileiou (2010)
c
ð8Þ
ðIÞ00 <7:6 _ 10_25 GeV_4 Astrophysical dispersion Vasileiou (2010)
P
jm 0Yjm
ð147_; 120_Þc
ð8Þ
ðIÞjm <2:6 _ 10_23 GeV_4 Astrophysical dispersion Abdo et al. (2009),
Kostelecky´ and Mewes (2009)*
c
ð8Þ
ðIÞ00 <9:2 _ 10_23 GeV_4 Astrophysical dispersion Abdo et al. (2009),
Kostelecky´ and Mewes (2009)*
j
P
jm 0Yjm
ð99:7_; 240_Þc
ð8Þ
ðIÞjm
j <3 _ 10_13 GeV_4 Astrophysical dispersion Boggs et al. (2004),
Kostelecky´ and Mewes (2009)*
jc
ð8Þ
ðIÞ00
j <9 _ 10_13 GeV_4 Astrophysical dispersion Boggs et al. (2004),
Kostelecky´ and Mewes (2009)*
j
P
jm 2Yjm
ð98:2_; 182:1_Þðk
ð8Þ
ðEÞjm
þ ik
ð8Þ
ðBÞjm
Þj &10_20 GeV_4 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
24 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
2004) involves additional operators constructed with the
torsion tensor T_
__. The Minkowski-spacetime limit of
QED with nonzero torsion contains terms that mimic
Lorentz violation, so searches for Lorentz violation can be
used to bound components of the torsion tensor (Kostelecky´
et al., 2008).
In Table XVI, each line specifies one term in the Lagrange
density for the QED extension in Riemann spacetime. Both
conventional QED terms and ones with Lorentz violation
are included. The first column indicates the sector to which
the term belongs. The second column lists the coefficient
controlling the corresponding operator. Note the standard
use of an uppercase letter for the coefficient H__, which
distinguishes it from the metric fluctuation h__. The third
column shows the number of components for the coefficient.
The next three columns list the operator, its mass dimension,
and the vierbein factor contracting the coefficient and the
operator. The final two columns list the properties of the
term under CPT and Lorentz transformations. A CPT-even
operator is indicated by a plus sign and a CPT-odd one by a
minus sign, while terms violating Lorentz invariance are
identified by a check mark.
Combination Result System Ref.
j
P
jm 2Yjm
ð87:3_; 37:3_Þðk
ð8Þ
ðEÞjm
þ ik
ð8Þ
ðBÞjm
Þj &10_20 GeV_4 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
j
P
jm 0Yjm
ð98:2_; 182:1_Þk
ð9Þ
ðVÞjm
j <6 _ 10_16 GeV_5 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
jk
ð9Þ
ðVÞ00
j <2 _ 10_15 GeV_5 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
j
P
jm 0Yjm
ð87:3_; 37:3_Þk
ð9Þ
ðVÞjm
j <1 _ 10_16 GeV_5 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
jk
ð9Þ
ðVÞ00
j <4 _ 10_16 GeV_5 Astrophysical birefringence Kostelecky´ and Mewes (2009)*
TABLE XV. (Continued)
TABLE XVI. Lagrange density for the minimal QED extension in Riemann spacetime.
Sector Coeff. No. Operator Dim. Factor CPT L.V.
Fermion m c_ c 3 _e þ
m5
_c
_
5c 3
_
ie þ
_c
_
aD $
_c 4 1
2 iee_
a þ
a_ 4 _c _ac 3 _ee_
a
_ !
b_ 4 _c _5_ac 3 _ee_
a
_ !
H__ 6 _c _abc 3 _ee_
ae_
b
þ !
c__ 16 _c _bD $
_c 4 _1
2 iee_
ae_ae_
b
þ !
d__ 16 _c _5_bD $
_c 4 _1
2 iee_
ae_ae_
b
þ !
e_ 4 _cD $
_c 4 _1
2 iee_
ae_a _ !
f_ 4 _c _5D $
_c 4 _1
2 iee_
ae_a _ !
g___ 24 _c _bcD $
_c 4 _1
4 iee_
ae_ae_
be_
c
_ !
Photon F__F__ 4 _1
4 e þ
ðkAF
Þ_ 4 A_F__ 3 1
2 e_____
_ !
ðkFÞ____ 19 F__F__ 4 _1
4 e þ !
Gravity R 2 e=2_ þ
_ 1 0 _e=_ þ
u 1 R 2 _e=2_ þ
s__ 9 R__ 2 e=2_ þ !
t____ 10 R____ 2 e=2_ þ !
TABLE XVII. C, P, T properties of operators for Lorentz violation in QED.
Coefficient C P T CP CT PT CPT
cTT; cJK; ðkF
Þ
TJTK; ðkF
Þ
JKLM
þ þ þ þ þ þ þ
bJ; gJTL; gJKT; ðkAF
Þ
J
þ þ _ þ _ _ _
bT; gJTT; gJKL; ðkAFÞT þ _ þ _ þ _ _
cTJ; cJT; ðkFÞTJKL þ _ _ _ _ þ þ
aT; eT; fJ
_ þ þ _ _ þ _
HJK; dTJ; dJT
_ þ _ _ þ _ þ
HTJ; dTT; dJK _ _ þ þ _ _ þ
aJ; eJ; fT _ _ _ þ þ þ _
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 25
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
As an example, consider the fourth row of Table XVI. This
concerns the term in the fermion sector with coefficient a_
for Lorentz violation. The coefficient has four independent
components, which control the four Lorentz-violating operators
_c
_
ac .
The gravitational couplings of this operator are
contained in the vierbein product ee_
a. The corresponding
term in the Lagrange density for the minimal QED extension
in Riemann spacetime is La
¼ _ea_e_
a
_c
_
ac .
It has mass
dimension 3 and is CPT odd. The Minkowski-spacetime limit
of this term can be obtained by the vierbein replacement
e_
a ! _
a. The number of index contractions in La is
two, one each for the _ and a indices, so the overall sign
of La is unaffected by the choice of convention for the
Minkowski metric.
The properties listed in Table XVI are those of the operators
in the Lagrange density rather than those associated with
observables. The issue of observability of a given coefficient
can be subtle because experiments always involve comparisons
of at least two quantities. The point is that in certain tests
a given coefficient may produce the same effect on two
or more quantities and so may be unobservable, or it may
produce effects indistinguishable from those of other coefficients.
This situation can often be theoretically understood
via a field redefinition that eliminates the coefficient from
the relevant part of the Lagrange density without affecting
the dynamics of the experiment in question. For example,
a constant coefficient a_ in the minimal QED extension in
Minkowski spacetime is unobservable in any experiment
involving a single fermion flavor because it can be absorbed
as a phase shift in the fermion field (Colladay and Kostelecky´,
1997, 1998). The situation changes in Riemann spacetime,
where three of the four components of a_ become observables
affecting the gravitational properties of the fermion
(Kostelecky´, 2004). Another example is provided by the
coefficient f_ in the minimal QED extension in Minkowski
spacetime, which can be converted into a coefficient of the
c__ type via a change of spinor basis (Altschul, 2006a).
Additional subtleties arise because any experiment must always
choose definitions of clock ticking rates, clock synchronizations,
rod lengths, and rod isotropies. This involves 10
free coordinate choices and implies the unobservability
of 10 combinations of coefficients for Lorentz violation
(Kostelecky´ and Tasson, 2010).
Table XVII lists the properties under discrete-symmetry
transformations of the Lorentz-violating operators in the
minimal QED extension (Kostelecky´ et al., 2002). The seven
transformations considered are charge conjugation C, parity
inversion P, time reversal T, and their combinations CP, CT,
PT, and CPT. The first column specifies the operator by
indicating its corresponding coefficient. Each of the other
columns concerns one of the seven transformations. An even
operator is indicated by a plus sign and an odd one by a minus
sign. The table contains eight rows, one for each of the eight
possible combinations of signs under C, P, and T.
Table XVIII lists the definitions of the 44 combinations of
coefficients for Lorentz violation that frequently appear in
experimental analyses involving the fermion sector of the
minimal QED extension in Minkowski spacetime in the
nonrelativistic limit. These combinations are conventionally
denoted by tilde coefficients, listed in the first column of the
table. Note that six of these combinations, ~cX, ~cY, ~cZ, ~gTX,
~gTY, and ~gTZ, are denoted as ~cQ;Y, ~cQ;X, ~cXY, ~gQ;Y, ~gQ;X, and
TABLE XIX. Definitions for the photon sector of the minimal
QED extension.
Symbol Combination Components
ð~_eþÞJK _ðkF
ÞTJTK þ 1
4 _JPQ_KRSðkF
ÞPQRS 5
ð~_o_ÞJK 1
2 _KPQðkF
ÞTJPQ þ 1
2 _JPQðkF
ÞTKPQ 5
ð~_e_ÞJK _ðkF
ÞTJTK _ 1
4 _JPQ_KRSðkF
ÞPQRS
þ2
3
ðkFÞTLTL JK
5
ð~_oþÞJK 1
2 _KPQðkFÞTJPQ _ 1
2 _JPQðkFÞTKPQ 3
~_tr
_2
3
½ðkF
ÞTXTX þ ðkF
ÞTYTY þ ðkF
ÞTZTZ_ 1
Total: 19
k1 ðkF
ÞTYXZ 1
k2 ðkFÞTXYZ 1
k3 ðkF
ÞTYTY _ ðkF
ÞXZXZ 1
k4 ðkF
ÞTZTZ _ ðkF
ÞXYXY 1
k5 ðkF
ÞTXTY þ ðkF
ÞXZYZ 1
k6 ðkF
ÞTXTZ _ ðkF
ÞXYYZ 1
k7 ðkFÞTYTZ þ ðkFÞXYXZ 1
k8 ðkF
ÞTXXY þ ðkF
ÞTZYZ 1
k9 ðkFÞTXXZ _ ðkFÞTYYZ 1
k10 ðkF
ÞTYXY _ ðkF
ÞTZXZ 1
k
ð3Þ
ðVÞ00
_
ffiffiffiffiffiffiffi
4_
p
ðkAF
ÞT 1
k
ð3Þ
ðVÞ10
_
ffiffiffiffiffiffiffiffiffiffiffiffi
4_=3
p
ðkAF
ÞZ 1
Rek
ð3Þ
ðVÞ11
ffiffiffiffiffiffiffiffiffiffiffiffi
2_=3
p
ðkAFÞX 1
Imk
ð3Þ
ðVÞ11
_
ffiffiffiffiffiffiffiffiffiffiffiffi
2_=3
p
ðkAF
ÞY 1
Total: 4
TABLE XVIII. Definitions for the fermion sector of the minimal
QED extension.
Symbol Combination Components
~bJ bJ
_ 1
2 "JKLHKL
_ mðdJT
_ 1
2 "JKLgKLT
Þ 3
~b_
J bJ
þ 1
2 "JKLHKL
þ mðdJT
þ 1
2 "JKLgKLT
Þ; 3
~bT bT
þ mgXYZ 1
~gT bT
_ mðgXYZ
_ gYZX
_ gZXY
Þ 1
~H
XT HXT þ mðdZY _ gXTT _ gXYYÞ 1
~H
YT HYT
þ mðdXZ
_ gYTT
_ gYZZ
Þ 1
~H
ZT HZT
þ mðdYX
_ gZTT
_ gZXX
Þ 1
~d_ mðdXX _ dYYÞ 2
~dQ mðdXX þ dYY _ 2dZZ _ gYZX _ gZXY þ 2gXYZÞ 1
~dJ mðdTJ
þ 1
2 dJT
Þ _ 1
4 "JKLHKL 3
~dYZ mðdYZ
þ dZY
_ gXYY
þ gXZZ
Þ 1
~dZX mðdZX þ dXZ _ gYZZ þ gYXXÞ 1
~dXY mðdXY
þ dYX
_ gZXX
þ gZYY
Þ 1
~gc mðgXYZ
_ gZXY
Þ 1
~g_ mðgXTX
_ gYTY
Þ 1
~gQ mðgXTX þ gYTY _ 2gZTZÞ 1
~gTJ mj"JKL
jgKTL 3
~gDJ
_bJ
þ m"JKL
ðgKTL
þ 1
2 gKLT
Þ 3
~gJK mðgJTT þ gJKKÞ; ðno K sum; J _ KÞ 6
~cQ mðcXX þ cYY _ 2cZZÞ 1
~c_ mðcXX
_ cYY
Þ 1
~cJ mj"JKL
jcKL 3
~cTJ mðcTJ þ cJTÞ 3
~cTT mcTT 1
Total: 44
26 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
TABLE XXI. Lagrange density for the boson sector of the minimal SME in Riemann-Cartan
spacetime.
Sector Coeff. Operator Dim. Factor CPT L.V.
Higgs _2 _y_ 2 e þ
_ ð_y_Þ2 4 _ 1
3! e þ
ðD__ÞyðD__Þ 4 _e þ
ðk_
Þ_ _yD__ þ H:c: 3 ie _ !
ðk__
Þ__ ðD__ÞyðD__Þ þ H:c: 4 1
2 e þ !
ðk_W
Þ__ _yW___ 4 _1
2 e þ !
ðk_B
Þ__ _y_B__ 4 _1
2 e þ !
Gauge TrðG__G__Þ 4 _1
2 e þ
TrðW__W__Þ 4 _1
2 e þ
B__B__ 4 _1
4 e þ
ðk0
Þ
_ B_ 1 e _ !
ðk1Þ_ B_B__ 3 e_____ _ !
ðk2
Þ
_ TrðW_W__
þ 2
3 igW_W_W_
Þ 3 e_____ _ !
ðk3Þ_ TrðG_G__ þ 2
3 ig3G_G_G_Þ 3 e_____ _ !
ðkG
Þ
____ TrðG__G__Þ 4 _1
2 e þ !
ðkW
Þ
____ TrðW__W__Þ 4 _1
2 e þ !
ðkBÞ____ B__B__ 4 _1
4 e þ !
Gravity R 2 e=2_ þ
_ 1 0 _e=_ þ
u R 2 _e=2_ þ
ðkTÞ___ T___ 1 e=2_ þ !
s__ R__ 2 e=2_ þ !
t____ R____ 2 e=2_ þ !
ðkTT
Þ_____ T__T___ 2 e=2_ þ !
ðkDT
Þ____ D_T___ 2 e=2_ þ !
TABLE XX. Lagrange density for the fermion sector of the minimal SME in Riemann-Cartan
spacetime.
Sector Coeff. Operator Dim. Factor CPT L.V.
Lepton _LA_aD $
_LA 4 1
2 iee_
a
þ
_R
A_aD $
_RA 4 1
2 iee_
a
þ
ðaL
Þ
_AB
_L
A_aLB 3 _ee_
a
_ !
ðaR
Þ
_AB
_R
A_aRB 3 _ee_
a
_ !
ðcLÞ__AB
_L
A_aD $ _LB 4 _1
2 iee_
a þ !
ðcR
Þ
__AB
_R
A_aD $ _RB 4 _1
2 iee_
a
þ !
Quark _QA_aD $
_QA 4 1
2 iee_
a þ
_U
A_aD $
_UA 4 1
2 iee_
a
þ
_D
A_aD $
_DA 4 1
2 iee_
a þ
ðaQ
Þ
_AB
_Q
A_aQB 3 _ee_
a
_ !
ðaUÞ_AB
_U
A_aUB 3 _ee_
a _ !
ðaD
Þ
_AB
_D
A_aDB 3 _ee_
a
_ !
ðcQ
Þ
__AB
_Q
A_aD $ _QB 4 _1
2 iee_
a
þ !
ðcU
Þ
__AB
_U
A_aD $ _UB 4 _1
2 iee_
a
þ !
ðcDÞ__AB
_D
A_aD $ _DB 4 _1
2 iee_
a þ !
Yukawa ðGL
Þ
AB
_L
A_RB
þ H:c: 4 _e þ
ðGU
Þ
AB
_Q
A_cUB
þ H:c: 4 _e þ
ðGDÞAB
_Q
A_DB þ H:c: 4 _e þ
ðHL
Þ
__AB
_L
A__abRB
þ H:c: 4 _1
2 ee_
ae_
b
þ !
ðHUÞ__AB
_Q
A_c_abUB þ H:c: 4 _1
2 ee_
ae_
b
þ !
ðHD
Þ
__AB
_Q
A__abDB
þ H:c: 4 _1
2 ee_
ae_
b
þ !
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 27
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
~gXY, respectively, in some early publications. The definitions
in the table are given for a generic fermion of mass m. Most
applications in the literature involve electrons, protons, neutrons,
and their antiparticles, for which the corresponding
mass is understood. The final column lists the number of
independent components of each coefficient. For matter involving
electrons, protons, neutrons, and their antiparticles,
there are therefore 132 independent observable coefficients
for Lorentz violation in the minimal QED sector of the SME
in Minkowski spacetime.
Table XIX presents definitions for certain combinations of
the 23 coefficients for Lorentz violation in the photon sector
of the minimal QED extension in Minkowski spacetime. This
table has three sections. The first section consists of five rows
listing 19 widely used combinations of the 19 coefficients for
CPT-even Lorentz violation. The second section provides 10
alternative combinations involving the 10 CPT-even Lorentzviolating
operators relevant to leading-order birefringence
(Kostelecky´ and Mewes, 2002). The third section lists four
combinations of the four coefficients for CPT-odd Lorentz
violation. These combinations appear when a basis of spinweighted
spherical harmonics is adopted.
B. Minimal SME
Table XX concerns the fermion-sector terms in the
Lagrange density of the minimal SME in Riemann-Cartan
spacetime. The column headings are similar to those in
Table XVI. In the lepton sector, the left- and right-handed
TABLE XXII. Coefficients in the neutrino sector.
Coeff. Dim. Oscillation CPT L.V.
em
AB 3 _ $ _; _ _ $ _ _ þ
½ðaL
Þ__
AB 3 _ $ _; _ _ $ _ _ _ !
½H___AB 3 _ $ _ _ þ !
½ðcLÞ___AB 4 _ $ _; _ _ $ _ _ þ !
½g____
AB 4 _ $ _ _ _ !
TABLE XXIII. Quadratic Lagrange density for the nonminimal photon sector in Minkowski spacetime.
Coeff. No. Operator Dim. Factor CPT L.V.
F__F__ 4 _1
4
þ
ðk
ð3Þ
AF
Þ_ _ ðkAFÞ_ 4 A_F__ 3 1
2 _____ _ !
ðk
ð5Þ
AF
Þ
_
_1_2 36 A_@_1@_2F__ 5 1
2 _____ _ !
ðk
ð7Þ
AF
Þ
_
_1_2_3_4 120 A_@_1@_2@_3@_4F__ 7 1
2 _____ _ !
.. .
.. .
.. .
.. .
.. .
ðk
ðdÞ
AF
Þ_1_ðd_3Þ
_
1
2
ðd þ 1Þðd _ 1Þðd _ 2Þ A_@_1
@_ðd_3ÞF__ odd d 1
2 _____ _ !
ðk
ð4Þ
F
Þ____ _ ðkFÞ____ 19 þ 1 F__F__ 4 _1
4
þ !
ðk
ð6Þ
F
Þ_____1_2 126 F__@_1@_2F__ 6 _1
4
þ !
ðk
ð8Þ
F
Þ_____1_2_3_4 360 F__@_1@_2@_3@_4F__ 8 _1
4
þ !
.. .
.. .
.. .
.. .
.. .
ðk
ðdÞ
F
Þ_____1_ðd_4Þ ðd þ 1Þdðd _ 3Þ F__@_1
@_ðd_4ÞF__ even d _1
4
þ !
TABLE XXIV. Spherical coefficients for the nonminimal photon sector in Minkowski spacetime.
Type Coeff. Dim. n j No.
Vacuum c
ðdÞ
ðIÞjm Even, _ 4 – 0; 1; . . . ; d _ 2 ðd _ 1Þ2
k
ðdÞ
ðEÞjm Even, _ 4 – 2; 3; . . . ; d _ 2 ðd _ 1Þ2 _ 4
k
ðdÞ
ðBÞjm Even, _ 4 – 2; 3; . . . ; d _ 2 ðd _ 1Þ2 _ 4
k
ðdÞ
ðVÞjm Odd, _ 3 – 0; 1; . . . ; d _ 2 ðd _ 1Þ2
Vacuum orthogonal ðc :ðdÞ
F
Þð0EÞ
njm Even, _4 0; 1; . . . ; d _ 4 n; n _ 2; n _ 4; . . . ;_ 0
ðd_1Þðd_2Þðd_3Þ
6
ðk
:ðdÞ
F
Þð0EÞ
njm Even, _6 1; 2; . . . ; d _ 4 n; n _ 2; n _ 4; . . . ;_ 0
ðd_1Þðd_2Þðd_3Þ
6
_ 1
ðk
:ðdÞ
F
Þð1EÞ
njm Even, _6 1; 2; . . . ; d _ 4 n þ 1; n _ 1; n _ 3; . . . ;_ 1
ðd_4Þðd2þdþ3Þ
6
ðk
:ðdÞ
F
Þð2EÞ
njm Even, _6 2; 3; . . . ; d _ 4 n; n _ 2; n _ 4; . . . ;_ 2
ðd_4Þðd2_2d_9Þ
6
ðk
:ðdÞ
F Þð1BÞ
njm Even, _6 1; 2; . . . ; d _ 4 n; n _ 2; n _ 4; . . . ;_ 1 dðd_2Þðd_4Þ
6
ðk
:ðdÞ
F
Þð2BÞ
njm Even, _6 1; 2; . . . ; d _ 4 n þ 1; n _ 1; n _ 3; . . . ;_ 2
ðdþ3Þðd_2Þðd_4Þ
6
ðk
:ðdÞ
AF
Þð0BÞ
njm Odd, _5 0; 1; . . . ; d _ 4 n; n _ 2; n _ 4; . . . ;_ 0
ðd_1Þðd_2Þðd_3Þ
6
ðk
:ðdÞ
AF
Þð1BÞ
njm Odd, _5 0; 1; . . . ; d _ 4 n þ 1; n _ 1; n _ 3; . . . ;_ 1
ðdþ1Þðd_1Þðd_3Þ
6
ðk
:ðdÞ
AF
Þð1EÞ
njm Odd, _5 1; 2; . . . ; d _ 3 n; n _ 2; n _ 4; . . . ;_ 1
ðdþ1Þðd_1Þðd_3Þ
6
28 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
leptons are denoted by LA and RA, where A is the generation
index. The SU(2) doublet LA includes the three neutrino
fields _e, __, and _ and the left-handed components of the
three charged leptons e, _, and . The SU(2) singlet RA
contains the right-handed components of e, _, and . The
derivative D_ is both spacetime and SUð3Þ _ SUð2Þ _ Uð1Þ
covariant. The quark fields are denoted UA, DA, and QA,
where A is the generation index. The right-handed components
of the u, c, and t quarks are the SU(2) singlets UA, while
the right-handed components of d, s, and b are the SU(2)
singlets DA. The six left-handed quark fields are contained in
the SU(2) doublet QA. The Yukawa sector involves terms
coupling the Higgs doublet _ to the leptons and to the quarks.
The conventional Yukawa-coupling matrices are denoted
ðGL
Þ
AB, ðGU
Þ
AB, and ðGD
Þ
AB. The Hermitian conjugate of
an operator is abbreviated H.c. in the table.
Table XXI presents information about the Higgs, gauge,
and pure-gravity sectors for the Lagrange density of the
minimal SME in Riemann-Cartan spacetime. The structure
of the table is the same as that of Table XX. As before, D_ is
both a spacetime and an SUð3Þ _ SUð2Þ _ Uð1Þ covariant
derivative. The complex Higgs field is denoted _, the
SU(3) color gauge fields and the SU(2) gauge fields are the
Hermitian adjoint matrices G_ and W_, respectively, while
the U(1) hypercharge gauge field is the singlet B_. Each
gauge field has an associated field strength, denoted G__
for the strong interactions, W__ for the weak interactions,
and B__ for the hypercharge. The pure-gravity sector of
Table XXI differs from that in Table XVI only in the addition
of terms involving the torsion field T_
__.
The minimal SME in Riemann-Cartan spacetime described
in Tables XX and XXI can be reduced to the minimal QED in
Riemann spacetime described in Table XVI as follows. For
the gauge sector, including the covariant derivatives, remove
all the gauge fields except the charge U(1) field in the photon
limit B_
! A_, and remove all the Higgs terms. For the
gravity sector, remove all the torsion terms. For the fermion
sector, restrict the lepton generation index to a single value,
remove all quark and neutrino terms, and replace the Yukawacoupling
terms with the relevant fermion mass terms.
Table XXII concerns the neutrino sector of the SME,
including both neutrino masses and Lorentz-violating terms.
For the latter, we restrict our attention to terms of mass
dimension 4 or less that involve three generations of active
neutrinos and antineutrinos, allowing for possible violations
of SUð3Þ _ SUð2Þ _ Uð1Þ gauge symmetry and lepton number
(Kostelecky´ and Mewes, 2004). In the table, the first row
involves the usual neutrino mass matrix em
AB, where the
indices A; B take values e, _, and , while the other rows
concern coefficients for Lorentz violation. The first column
lists the coefficients, and the second column gives the dimension
of the corresponding operators in the Lagrange density.
The third column indicates generically the type of neutrino
oscillations controlled by the coefficients. The final two
columns list the properties of the operators under CPT and
Lorentz transformations.
C. Nonminimal photon sector
Table XXIII provides information on the nonminimal photon
sector of the full SME in Minkowski spacetime. The
relevant part of the Lagrange density includes operators of
arbitrary dimension d that are both gauge invariant and
quadratic in the photon field A_ (Kostelecky´ and Mewes,
2009). The structure of the table is similar to that adopted for
Tables XVI, XX, and XXI, with each row associated with a
term in the Lagrange density. The first column lists the
coefficient for Lorentz violation, while the second column
counts its independent components. The next three columns
provide the corresponding operator appearing in the Lagrange
density, its mass dimension, and the factor contracting the
coefficient and the operator. The last two columns list the
properties of the operator under CPT and Lorentz transformations,
using the same conventions as Table XVI.
Three sections appear in Table XXIII, separated by horizontal
lines. The first section concerns the conventional
Lorentz-preserving Maxwell term in the Lagrange density
for the photon sector. The second and third sections concern
coefficients associated with operators of odd and even dimensions
d, respectively. Each of these sections has three rows for
the lowest three values of d, along with a final row applicable
to the case of general d. The notation for the coefficients
incorporates a superscript specifying the dimension d of the
corresponding operator. Note that the mass dimension of the
coefficients is 4 _ d. In each section, the first row describes
terms in the minimal SME, and the match is provided between
the general notation for nonminimal coefficients and
the standard notation used for the minimal SME in
Table XVI. In the case of mass dimension 4, there are 19
independent Lorentz-violating operators. However, for this
case the number in the second column is listed as 19 þ 1 to
allow for an additional Lorentz-preserving trace term, which
maintains consistency with the expression for general d
in the last row.
Table XXIV summarizes properties of spherical coefficients
for Lorentz violation in the nonminimal photon sector
of the full SME in Minkowski spacetime (Kostelecky´ and
Mewes, 2009). The spherical coefficients are combinations of
the coefficients listed in Table XXIII that are of particular
relevance for observation and experiment. They can be separated
into two types. One set consists of vacuum coefficients
that control leading-order effects on photon propagation in
FIG. 1. Standard Sun-centered inertial reference frame (Bluhm
et al., 2003).
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 29
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
the vacuum, including birefringence and dispersion. The
complementary set contains the vacuum-orthogonal coefficients,
which leave photon propagation in the vacuum unaffected
at leading order. The two parts of Table XXIV reflect
this separation, with the part above the horizontal line involving
the vacuum coefficients and the part below involving the
vacuum-orthogonal ones.
In Table XXIV, the first column of the table identifies the
type of spherical coefficients, while the second column lists
the specific coefficient. The coefficient notation reflects properties
of the corresponding operator. Coefficients associated
with operators leaving unchanged the leading-order photon
propagation in the vacuum are distinguished by a negation
diacritic :. A symbol k denotes coefficients for birefringent
operators, while c denotes nonbirefringent ones. The superscript
d refers to the operator mass dimension, while the
subscripts n, j, and m determine the frequency or wavelength
dependence, the total angular momentum, and the z component
of the angular momentum, respectively. The superscripts
E and B refer to the parity of the operator, while the numerals
0, 1, or 2 preceding E or B refer to the spin weight. Note that
the photon-sector coefficients in the minimal SME correspond
to the vacuum coefficients with d ¼ 3; 4. The third,
fourth, and fifth columns of Table XXIV provide the allowed
ranges of the dimension d and of the indices n and j. The
index m can take values ranging from _j to j in unit increments.
The final column gives the number of independent
coefficient components for each operator of dimension d.
ACKNOWLEDGMENTS
This work was supported in part by DOE Grant No. DEFG02-
91ER40661 and by the Indiana University Center for
Spacetime Symmetries.
REFERENCES
Abdo, A., et al. (Fermi LAT and GBM Collaborations), 2009,
Science 323, 1688.
Adamson, P., et al. (MINOS Collaboration), 2008, Phys. Rev. Lett.
101, 151601.
Adamson, P., et al. (MINOS Collaboration), 2010, Phys. Rev. Lett.
105, 151601.
Aharonian, F., et al. (H.E.S.S. Collaboration), 2008, Phys. Rev. Lett.
101, 170402.
Albert, J., et al. (MAGIC Collaboration), 2008, Phys. Lett. B 668,
253.
Altarev, I., et al., 2009, Phys. Rev. Lett. 103, 081602.
Altschul, B., 2006a, J. Phys. A 39, 13757.
Altschul, B., 2006b, Phys. Rev. D 74, 083003.
Altschul, B., 2007a, Phys. Rev. D 75, 023001.
Altschul, B., 2007b, Phys. Rev. D 75, 041301(R).
Altschul, B., 2007c, Astropart. Phys. 28, 380.
Altschul, B., 2008a, Phys. Rev. D 77, 105018.
Altschul, B., 2008b, Phys. Rev. D 78, 085018.
Altschul, B., 2009a, Phys. Rev. D 79, 061702(R).
Altschul, B., 2009b, Phys. Rev. D 80, 091901(R).
Altschul, B., 2009c, J. Phys. Conf. Ser. 173, 012003.
Altschul, B., 2010a, Phys. Rev. D 81, 041701.
Altschul, B., 2010b, Phys. Rev. D 82, 016002.
Anderson, D. L., M. Sher, and I. Turan, 2004, Phys. Rev. D 70,
016001.
Antonini, P., et al., 2005, Phys. Rev. A 72, 066102.
Aubert, B., et al., 2006, BABAR Collaboration, hep-ex/0607103.
Aubert, B., et al. (BABAR Collaboration), 2008, Phys. Rev. Lett.
100, 131802.
Auerbach, L. B., et al. (LSND Collaboration), 2005, Phys. Rev. D
72, 076004.
Bailey, Q. G., and V. A. Kostelecky´, 2006, Phys. Rev. D 74, 045001.
Barger, V., D. Marfatia, and K. Whisnant, 2007, Phys. Lett. B 653,
267.
Battat, J. B. R., J. F. Chandler, and C.W. Stubbs, 2007, Phys. Rev.
Lett. 99, 241103.
Bear, D., et al., 2000, Phys. Rev. Lett. 85, 5038.
Bear, D., et al., 2002, Phys. Rev. Lett. 89, 209902.
Bennett, G.W., et al. (Muon g _ 2 Collaboration), 2008, Phys. Rev.
Lett. 100, 091602.
Bluhm, R., et al., 1999, Phys. Rev. Lett. 82, 2254.
Bluhm, R., et al., 2002, Phys. Rev. Lett. 88, 090801.
Bluhm, R., et al., 2003, Phys. Rev. D 68, 125008.
Bluhm, R., 2006, Lect. Notes Phys. 702, 191.
Bluhm, R., V. A. Kostelecky´, and C. D. Lane, 2000, Phys. Rev. Lett.
84, 1098.
Bocquet, J.-P., et al., 2010, Phys. Rev. Lett. 104, 241601.
Boggs, S. E., et al., 2004, Astrophys. J. Lett. 611, L77.
Brown, J. M., et al., 2010, arXiv:1006.5425 [Phys. Rev. Lett. (to be
published)]; in Kostelecky´ (2011).
Brown, M. L., et al. (QUaD Collaboration), 2009, Astrophys. J. 705,
978.
Cabella, P., P. Natoli, and J. Silk, 2007, Phys. Rev. D 76, 123014.
Cane`, F., et al., 2004, Phys. Rev. Lett. 93, 230801.
Carone, C. D., M. Sher, and M. Vanderhaeghen, 2006, Phys. Rev. D
74, 077901.
Carroll, S. M., and G. B. Field, 1997, Phys. Rev. Lett. 79, 2394.
Carroll, S. M., G. B. Field, and R. Jackiw, 1990, Phys. Rev. D 41,
1231.
Chung, K.-Y., et al., 2009, Phys. Rev. D 80, 016002.
Colladay, D., and V. A. Kostelecky´, 1997, Phys. Rev. D 55, 6760.
Colladay, D., and V. A. Kostelecky´, 1998, Phys. Rev. D 58, 116002.
Cotter, J. P., and B. T. H. Varcoe, 2006, physics/0603111.
Dehmelt, H., et al., 1999, Phys. Rev. Lett. 83, 4694.
Deile, M., et al. (Muon g _ 2 Collaboration), 2002, in Kostelecky´
(2002).
Di Domenico, A. (KLOE Collaboration), 2008, in Kostelecky´
(2008).
Di Domenico, A. (KLOE Collaboration), 2009, Found. Phys. 40,
852.
Eisele, Ch., A.Yu. Nevsky, and S. Schiller, 2009, Phys. Rev. Lett.
103, 090401.
Feng, B., et al., 2006, Phys. Rev. Lett. 96, 221302.
Flambaum, V., S. Lambert, and M. Pospelov, 2009, Phys. Rev. D 80,
105021.
Gabrielse, G., et al., 1999, Phys. Rev. Lett. 82, 3198.
Greenberg, O.W., 2002, Phys. Rev. Lett. 89, 231602.
Gubitosi, G., et al., 2009, J. Cosmol. Astropart. Phys., 021.
Heckel, B. R., et al., 2006, Phys. Rev. Lett. 97, 021603.
Heckel, B. R., et al., 2008, Phys. Rev. D 78, 092006.
Herrmann, S., et al., 2005, Phys. Rev. Lett. 95, 150401.
Herrmann, S., et al., 2008, in Kostelecky´ (2008).
Herrmann, S., et al., 2009, Phys. Rev. D 80, 105011.
Hohensee, M., et al., 2007, Phys. Rev. D 75, 049902(E).
Hohensee, M. A., et al., 2009a, Phys. Rev. D 80 036010.
Hohensee, M. A., et al., 2009b, Phys. Rev. Lett. 102, 170402.
Hohensee, M. A., et al., 2010, arXiv:1006.1376.
Hou, L.-S., W.-T. Ni, and Y.-C. M. Li, 2003, Phys. Rev. Lett. 90,
201101.
30 V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
Hughes, V.W., et al., 2001, Phys. Rev. Lett. 87, 111804.
Humphrey, M. A., et al., 2003, Phys. Rev. A 68, 063807.
Hunter, L., et al., 1999, in Kostelecky´ (1999).
Kahniashvili, T., R. Durrer, and Y. Maravin, 2008, Phys. Rev. D 78,
123006.
Katori, T. (MiniBooNE Collaboration), 2010, in Kostelecky´ (2011).
Kibble, T.W. B., 1961, J. Math. Phys. (N.Y.) 2, 212.
Klinkhamer, F. R., and M. Risse, 2008, Phys. Rev. D 77, 117901.
Klinkhamer, F. R., and M. Schreck, 2008, Phys. Rev. D 78, 085026.
Komatsu, E., et al., 2010, arXiv:1001.4538.
Komatsu, E., et al. (WMAP Collaboration), 2009, Astrophys. J.
Suppl. Ser. 180, 330.
Kornack, T.W., G. Vasilakis, and M.V. Romalis, 2008, in
Kostelecky´ (2008).
Kostelecky´, V. A., 1998, Phys. Rev. Lett. 80, 1818.
Kostelecky´, V. A., ed., 1999, CPT and Lorentz Symmetry I (World
Scientific, Singapore).
Kostelecky´, V. A., ed., 2002, CPT and Lorentz Symmetry II (World
Scientific, Singapore).
Kostelecky´, V. A., 2004, Phys. Rev. D 69, 105009.
Kostelecky´, V. A., ed., 2005, CPT and Lorentz Symmetry III (World
Scientific, Singapore).
Kostelecky´, V. A., ed., 2008, CPT and Lorentz Symmetry IV (World
Scientific, Singapore).
Kostelecky´, V. A., ed., 2011, CPT and Lorentz Symmetry V (World
Scientific, Singapore).
Kostelecky´, V. A., and C. D. Lane, 1999, Phys. Rev. D 60, 116010.
Kostelecky´, V. A., C. D. Lane, and A. G. M. Pickering, 2002, Phys.
Rev. D 65, 056006.
Kostelecky´, V. A., and M. Mewes, 2002, Phys. Rev. D 66, 056005.
Kostelecky´, V. A., and M. Mewes, 2004, Phys. Rev. D 69, 016005.
Kostelecky´, V. A., and M. Mewes, 2006, Phys. Rev. Lett. 97,
140401.
Kostelecky´, V. A., and M. Mewes, 2007, Phys. Rev. Lett. 99,
011601.
Kostelecky´, V. A., and M. Mewes, 2008, Astrophys. J. Lett.
689, L1.
Kostelecky´, V. A., and M. Mewes, 2009, Phys. Rev. D 80, 015020.
Kostelecky´, V. A., and R. Potting, 1995, Phys. Rev. D 51, 3923.
Kostelecky´, V. A., and N. Russell, 2011, arXiv:0801.0287v4.
Kostelecky´, V. A., N. Russell, and J. D. Tasson, 2008, Phys. Rev.
Lett. 100, 111102.
Kostelecky´, V. A., and J. Tasson, 2010, arXiv:1006.4106.
Kostelecky´, V. A., and J. D. Tasson, 2009, Phys. Rev. Lett. 102,
010402.
Kostelecky´, V. A., and R. J. Van Kooten, 2010, arXiv:1007.5312.
Lane, C. D., 2005, Phys. Rev. D 72, 016005.
Link, J., et al. (FOCUS Collaboration), 2003, Phys. Lett. B 556, 7.
Lipa, J. A. et al., 2003, Phys. Rev. Lett. 90, 060403.
Messier, M. D., 2005, in Kostelecky´ (2005).
Mewes, M., 2008, Phys. Rev. D 78, 096008.
Mittleman, R. K., et al., 1999, Phys. Rev. Lett. 83, 2116.
Mu¨ller, H., 2005, Phys. Rev. D 71, 045004.
Mu¨ller, H., et al., 2003a, Phys. Rev. Lett. 91, 020401.
Mu¨ller, H., et al., 2003b, Phys. Rev. D 68, 116006.
Mu¨ller, H., et al., 2007, Phys. Rev. Lett. 99, 050401.
Mu¨ller, H., et al., 2008, Phys. Rev. Lett. 100, 031101.
Nguyen, H. (KTeV Collaboration), 2002, in Kostelecky´ (2002).
Nodland, B., and J. P. Ralston, 1997, Phys. Rev. Lett. 78, 3043.
Pagano, L., et al., 2009, Phys. Rev. D 80, 043522.
Phillips, D. F., et al., 2001, Phys. Rev. D 63, 111101.
Reinhardt, S., et al., 2007, Nature Phys. 3, 861.
Stanwix, P. L., et al., 2005, Phys. Rev. Lett. 95, 040404.
Stanwix, P. L., et al., 2006, Phys. Rev. D 74, 081101(R).
Stecker, F.W., and S. L. Glashow, 2001, Astropart. Phys. 16, 97.
Tobar, M. E., et al., 2009, Phys. Rev. D 80, 125024.
Tullney, K., et al., 2010, in Kostelecky´ (2011).
Utiyama, R., 1956, Phys. Rev. 101, 1597.
Vasileiou, V. (Fermi GBT and LAT Collaborations), 2010, in
Kostelecky´ (2011).
Wolf, P., et al., 2004, Phys. Rev. D 70, 051902.
Wolf, P., et al., 2006, Phys. Rev. Lett. 96, 060801.
Wu, E.Y. S., et al. (QUaD Collaboration), 2009, Phys. Rev. Lett.
102, 161302.
Xia, J.-Q., et al., 2008, Astron. Astrophys. 483, 715.
Xia, J.-Q., H. Li, and X. Zhang, 2010, Phys. Lett. B 687, 129.
V. Alan Kostelecky´ and Neil Russell: Data tables for Lorentz and CPT violation 31
Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011
he Barrel Organ
6 Comments:
Some great гecommеndations on keeping your batteгy in an optimal conԁition.
These kinds of points ρrovides you with more battery
life and sаve a little money in the long run!
Feel free to vіsit mу blοg pοst - psztsrv.inf.elte.hu
The other day, ωhile I was at ωоrκ, my sistеr stole my apρle іpad anԁ teѕted to ѕеe if it сan survivе
a forty foot drоp, just so she can be a youtubе senѕatiοn.
My apρle iρаd іѕ now ԁestгoyed anԁ ѕhe
has 83 ѵiews. I know this is entiгelу off toρic but I had
to share it with someone!
Ηere is my wеbsitе: Silk N Sensepil Reviews
Cаn you tell uѕ mогe about this?
I'd like to find out some additional information.
Review my weblog v2 Cigs reviews
Excellent post. I'm dealing with some of these issues as well..
Here is my homepage: Pirater Un compte facebook
Outstаnding queѕt there. What oсcurrеԁ aftеr?
Thanks!
Here is my ѕite ... crearfacebook.weebly.com
Do you ponder if the Actron CP9180 OBD II AutoScanner is an
item you should really get? Count how a lot of periods
the company motor light flashes.
Also visit my webpage; obd ii scan tool *http://www.thehotboysworld.com/*
Post a Comment
<< Home